1.Mechanism of Dangui Shaoyaosan in Alleviating Inflammatory Responses in Diabetic Kidney Disease by Modulating Macrophage Polarization in Kidneys of db/db Mice
Luyu HOU ; Linlin ZHENG ; Wenjing SHI ; Zixuan WANG ; Shilong GUO ; Zhe LYU ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):1-10
ObjectiveTo observe the effects of Danggui Shaoyaosan on macrophage polarization and renal inflammation in db/db mice with diabetic kidney disease (DKD), and to explore its renal protective effects and underlying mechanisms. MethodsEight db/m mice were assigned to the normal group, and forty db/db mice were randomly divided into a model group, low-, medium-, and high-dose Danggui Shaoyaosan groups (8.39, 16.77, 33.54 g·kg-1), and an irbesartan group (0.025 g·kg-1). All mice were administered treatment by gavage for 12 consecutive weeks. General conditions of the mice were observed during the intervention. At the end of the 12-week intervention, 24-h urine samples were collected using metabolic cages, after which the mice were anesthetized for sample collection. Blood was collected by enucleation and centrifuged to obtain serum for the determination of glycated serum protein (GSP), serum creatinine (SCr), blood urea nitrogen (BUN), total cholesterol (TC), and triglycerides (TG). The urinary albumin-to-creatinine ratio (UACR) was measured. Renal pathological changes were observed using hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and Masson staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), and monocyte chemoattractant protein-1 (MCP-1) levels. Immunofluorescence (IF) was performed to detect F4/80 expression in renal tissue, and immunohistochemistry (IHC) was used to assess CD206 expression. Real-time quantitative polymerase chain reaction (Real-time PCR) was employed to measure the mRNA expression of TNF-α, IL-10, inducible nitric oxide synthase (iNOS), and arginase-1 (Arg-1). Western blot analysis was used to detect the protein expression of iNOS, Arg-1, CD86, and CD206 in renal tissue. ResultsCompared with the normal group, the model group showed increased levels of GSP, UACR, SCr, BUN, TC, and TG, elevated levels of the inflammatory factor TNF-α and the chemokine MCP-1, and decreased IL-10 levels (P<0.01). Pathological examination revealed glomerular hypertrophy, mesangial cell proliferation with marked mesangial expansion, inflammatory cell infiltration, vacuolar degeneration of renal tubular epithelial cells, prominent glycogen deposition, and increased collagen fiber deposition. In addition, relative F4/80 fluorescence intensity was enhanced, CD206 expression in the glomeruli and renal interstitium was reduced, and TNF-α and iNOS mRNA expression was increased. IL-10 and Arg-1 mRNA expression was decreased, iNOS and CD86 protein expression was increased, and Arg-1 and CD206 protein expression was decreased (P<0.05, P<0.01). Compared with the model group, the Danggui Shaoyaosan groups and the irbesartan group showed decreased levels of GSP, UACR, SCr, BUN, TC, and TG, reduced serum TNF-α and MCP-1 levels, and increased IL-10 levels. Renal pathological damage was improved to varying degrees. Relative F4/80 fluorescence intensity was reduced, CD206 expression in the glomeruli and renal interstitium was increased, and TNF-α and iNOS mRNA expression was decreased. IL-10 and Arg-1 mRNA expression was increased, iNOS and CD86 protein expression was reduced, and Arg-1 and CD206 protein expression was increased (P<0.05, P<0.01). ConclusionDanggui Shaoyaosan can improve renal function and alleviate renal pathological damage in db/db mice. Its mechanism may be related to inhibiting M1 pro-inflammatory macrophage polarization, promoting M2 anti-inflammatory macrophage polarization, reducing inflammatory responses, delaying the progression of renal fibrosis, improving renal pathological injury, and thereby exerting renal protective effects.
2.Mechanism of Danggui Shaoyaosan in Improving Glomerulosclerosis in db/db Mice via SIRT1/HIF-1α/VLDLr Signaling Pathway
Ruijia LI ; Zixuan WANG ; Shilong GUO ; Jing LI ; Qianqian ZHANG ; Wen DONG ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):11-18
ObjectiveTo investigate the potential mechanism of Danggui Shaoyaosan (DSS) in ameliorating renal injury in db/db mice. MethodsThirty 8-week-old specific pathogen-free (SPF)-grade male db/db mice and six db/m mice were acclimated for one week. Urinary microalbumin and blood glucose levels were measured weekly in both db/db and db/m mice. Successful modeling was determined by significantly higher microalbuminuria in db/db mice compared to db/m mice and a fasting blood glucose ≥16.7 mmol·L-1. The 30 db/db mice were randomly divided into five groups: the model group, the irbesartan (IBN) group, and three DSS dose groups (low-, medium-, and high-dose DSS groups, administered at 16.77, 33.54, 67.08 g·kg-1·d-1, respectively). Additionally, the six db/m mice served as the normal control group. The IBN group received irbesartan at 0.025 g·kg-1·d-1 by gavage, while the three DSS groups received DSS at 16.77, 33.54, and 67.08 g·kg-1·d-1 by gavage, respectively. The normal and model groups were administered with an equivalent volume of normal saline by gavage. All interventions lasted for 8 consecutive weeks. After intervention, serum creatinine (SCr), blood urea nitrogen (BUN), urinary total protein (UTP), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) were measured to evaluate the therapeutic efficacy of the treatments. Renal histopathological changes were observed with hematoxylin-eosin (HE) staining. Western blot was used to detect the protein expression of silencing information regulator 1 (SIRT1), hypoxia-inducible factor-1α (HIF-1α), very low-density lipoprotein receptor (VLDLr), and cluster of differentiation 31 (CD31). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA levels of HIF-1α and VLDLr. Immunohistochemistry was used to observe the expression and distribution of HIF-1α and Caspase-3. ResultsCompared to the normal group, the model group showed significantly increased SCr, BUN, UTP, TG, and LDL-C. HE staining revealed glomerulosclerosis, mesangial matrix hyperplasia, capillary loop distortion and thickening, with extensive inflammatory cell infiltration. Protein expression of SIRT1 and CD31 significantly decreased (P<0.05), while HIF-1α and VLDLr protein and mRNA levels increased (P<0.05). Immunohistochemistry showed increased expression of HIF-1α and Caspase-3 (P<0.05), indicating hypoxia and apoptosis in renal cells. In all treatment groups, SCr, BUN, TG, and LDL-C were significantly reduced compared to the model group (P<0.05), and UTP was significantly improved in the medium-dose DSS group (P<0.05). Renal tissue structure and morphology were improved, inflammatory cells were reduced, and no vascular hyaline degeneration was observed. SIRT1 and CD31 protein expression was elevated to varying degrees compared to the model group (P<0.05), while HIF-1α and VLDLr protein and mRNA levels decreased (P<0.05). Immunohistochemistry showed reduced expression of HIF-1α and Caspase-3 in all treatment groups (P<0.05), with the most significant improvement observed in the IBN group and medium-dose DSS group (P<0.05). ConclusionDSS can effectively ameliorate glomerulosclerosis and lipid deposition in db/db mice, and its mechanism may involve the SIRT1/HIF-1α/VLDLr signaling pathway.
3.Mechanism of Danggui Shaoyaosan in Improving Inflammatory Response in Mice with Diabetic Kidney Disease Based on TLR4/p65/NLRP3 Signaling Pathway
Shilong GUO ; Ruijia LI ; Zixuan WANG ; Xinai WANG ; Luyu HOU ; Wenjing SHI ; Mengyuan TIAN ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):19-27
ObjectiveTo investigate the effect of Danggui Shaoyaosan on the expression of Toll-like receptor 4/nuclear factor-kappa B p65/NOD-like receptor protein 3 (TLR4/NF-κB p65/NLRP3) signaling pathway in the renal tissues of db/db mice with spontaneous diabetes, and to explore the potential mechanism by which Danggui Shaoyaosan alleviates inflammation in diabetic kidney disease (DKD). MethodsThirty db/db mice were divided into five groups: A model group, Danggui Shaoyaosan low- (16.77 g·kg-1·d-1), medium- (33.54 g·kg-1·d-1), and high-dose (67.08 g·kg-1·d-1) intervention groups, as well as an irbesartan group (0.025 g·kg-1·d-1) by the random number table method, with 6 mice in each group. Additionally, 6 db/m mice were assigned to the normal group. After 8 weeks of intervention, the following parameters were determined by corresponding methods: body weight, fasting blood glucose (FBG), 24-hour urinary protein (24 h-UTP), and serum creatinine (SCr) levels, renal histopathological analysis by hematoxylin-eosin (HE) staining, Masson staining, and periodic acid-Schiff (PAS) staining, the protein and mRNA expression levels of TLR4, NF-κB p65, NLRP3, tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-18 (IL-18) by Western blot and Real-time quantitative polymerase chain reaction (Real-time PCR), as well as TLR4, NF-κB p65, and NLRP3 protein expression in renal tissues by immunohistochemistry (IHC). ResultsCompared with the normal group, the model group exhibited increased body weight, FBG, 24 h-UTP, and SCr levels (P<0.05); disordered renal structure, thickened basement membrane, and interstitial inflammatory cell infiltration, elevated TLR4, NF-κB p65, NLRP3, TNF-α, IL-1β, IL-6, and IL-18 expression; as well as decreased IL-10 expression (P<0.05). Compared with the model group, these pathological changes and biochemical abnormalities were reversed in the medicine intervention groups to varying degrees (P<0.05). ConclusionDanggui Shaoyaosan may delay DKD progression by alleviating renal inflammatory response and reducing urinary protein excretion via modulating the TLR4/NF-κB p65/NLRP3 signaling pathway.
4.Protective Effect and Potential Mechanism of Danggui Shaoyaosan on Diabetic Kidney Disease in db/db Mice Based on Endoplasmic Reticulum Stress in Glomerular Endothelial Cells
Ruijia LI ; Zixuan WANG ; Shilong GUO ; Sen YANG ; Jing LI ; Qianqian ZHANG ; Wen DONG ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):28-35
ObjectiveTo investigate the therapeutic efficacy of Danggui Shaoyaosan (DSS) on renal injury in db/db mice and its impact on endoplasmic reticulum stress (ERS) in renal tissues. MethodsThirty 8-week-old male db/db mice and six db/m mice were acclimated for one week, after which urinary microalbumin and blood glucose levels were monitored to establish a diabetic kidney disease (DKD) model. The model mice were randomly divided into a model group, an irbesartan group, and three DSS treatment groups with different doses (16.77, 33.54, and 67.08 g·kg-1·d-1). A normal group was set as control. Each group was intragastrically administered with the corresponding drugs or saline for 8 weeks. After the intervention, general conditions were observed. Serum cystatin C (Cys-C), 24-hour urinary total protein (24 h-UTP), 24-hour urinary microalbumin (24 h-UMA), urinary creatinine (Ucr), and urea nitrogen (UUN) were measured. Transmission electron microscopy (TEM) was used to observe glomerular basement membrane (GBM) and ultrastructural changes of the endoplasmic reticulum (ER) in glomerular endothelial cells. Western blot, real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), and immunohistochemistry were used to analyze renal tissue structure and the expression of GRP78, CHOP, and related markers. ResultsCompared with the normal group, the mice in the model group showed curled posture, sluggish response, poor fur condition, increased levels of Cys-C, 24 h-UTP, 24 h-UMA, and UUN (P<0.05), while Ucr decreased (P<0.05). The GBM was significantly thickened, with podocyte and foot process fusion. The protein expressions of GRP78, CHOP, and ATF6 were significantly upregulated (P<0.05), the mRNA levels of GRP78 and CHOP increased (P<0.05), and immunohistochemistry showed an enhanced GRP78 signal (P<0.05). After treatment, the mice exhibited improved behavior, normalized GBM and podocyte structure, improved ER morphology and markedly better biochemical indicators. Western blot, Real-time PCR, and immunohistochemistry indicated that the ERS-related markers were downregulated in the DSS treatment groups (P<0.05), suggesting alleviated ERS and improved renal function. ConclusionDSS can effectively ameliorate renal pathological damage in db/db mice, possibly by regulating ERS in glomerular endothelial cells, although the underlying signaling mechanisms require further investigation.
5.Renal Protective Mechanism of Danggui Shaoyaosan in db/db Mice Based on RhoA/ROCK/NF-κB Signaling Pathway
Luyu HOU ; Yuanyuan ZHANG ; Wenjing SHI ; Shilong GUO ; Zixuan WANG ; Linlin ZHENG ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):30-38
ObjectiveTo investigate whether Danggui Shaoyaosan (DSS) inhibits oxidative stress and alleviates inflammation via the Ras homolog family member A (RhoA)/Rho-associated coiled-coil containing protein kinase 1 (ROCK)/nuclear factor kappa-B (NF-κB) signaling pathway, thereby delaying the progression of diabetic kidney disease (DKD) and exerting a nephroprotective effect. MethodsEight db/m mice were assigned to the normal group, and forty 8-week-old db/db mice were randomly divided into the model group, DSS low-dose group (8.39 g·kg-1), DSS medium-dose group (16.77 g·kg-1), DSS high-dose group (33.54 g·kg-1), and irbesartan group (0.025 g·kg-1), with eight mice in each group. All groups were administered the corresponding treatment by gavage once daily for 12 weeks. The normal and model groups received an equal volume of saline. During administration, changes in body weight, fasting blood glucose (FBG), and 24 hour urinary protein (24 h UTP) were observed. After 12 consecutive weeks of administration, hematoxylin-eosin (HE) staining and Masson's trichrome staining were used to observe renal histopathological changes in each group. The levels of reactive oxygen species (ROS) in renal tissue were detected using the dihydroethidium (DHE) method. The expression levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in renal tissue were determined. Serum interleukin-1β (IL-1β) and interleukin-6 (IL-6) levels were measured using enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of RhoA, ROCK1, and NF-κB p65 in renal tissues were detected by Real-time quantitative polymerase chain reaction (Real-time PCR). Protein expression levels of fibronectin (FN), Collagen Ⅳ(Col Ⅳ), transforming growth factor-β1 (TGF-β1), RhoA, ROCK, and NF-κB p65 in renal tissues were determined by Western blot. ResultsCompared with the normal group, the model group showed significantly increased body weight, FBG, and 24 h UTP levels (P<0.01), elevated serum IL-1β and IL-6 levels, enlarged glomerular volume, diffuse mesangial expansion, increased mesangial matrix, and marked collagen fiber proliferation in renal tissues. SOD activity was decreased, while MDA, ROS, RhoA, ROCK1, and NF-κB p65 mRNA expression levels were increased (P<0.01), and the protein expression levels of FN, Col Ⅳ, TGF-β1, RhoA, ROCK, and NF-κB p65 were also elevated (P<0.01). Compared with the model group, the DSS low-, medium-, and high-dose groups and the irbesartan group showed reductions in body weight, FBG, and 24 h UTP, decreased serum IL-1β and IL-6 levels, varying degrees of improvement in renal histopathology, increased SOD activity, decreased MDA levels, reduced ROS expression, and significantly downregulated RhoA, ROCK1, and NF-κB p65 mRNA expression (P<0.05, P<0.01), as well as reduced protein expression levels of FN, Col Ⅳ, TGF-β1, RhoA, ROCK, and NF-κB p65 (P<0.05, P<0.01). ConclusionDSS can alleviate oxidative stress and inflammation, reduce extracellular matrix deposition, and delay renal fibrosis progression in db/db mice. Its mechanism may be related to the inhibition of the RhoA/ROCK/NF-κB signaling pathway, thereby exerting a therapeutic effect on DKD.
6.Surgical strategies for osteotomy correction of severe lower limb deformities in hypophosphatemic rickets.
Shaofeng JIAO ; Sihe QIN ; Zhenjun WANG ; Yue GUO ; Hongsheng XU ; Zhijie LIU ; Shilong WANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(6):701-707
OBJECTIVE:
To explore the corrective strategies and effectiveness of osteotomy surgery for severe lower limb deformities in hypophosphatemic rickets.
METHODS:
A retrospective analysis was conducted on 29 patients with severe lower limb deformities of hypophosphatemic rickets who underwent surgical treatment between February 2012 and August 2024. There were 9 males and 20 females. The age ranged from 13 to 53 years, with an average of 24.6 years. All patients were deformities of both lower limbs, presenting as 24 cases of O-shaped legs, 2 cases of wind-blown deformities, and 3 cases of X-shaped legs. Based on the full-length films of both lower limbs in the standing position before operation, the osteotomy planes of the femur, tibia, and fibula were designed. Among them, if both the same-sided thigh and leg were deformed, staged surgeries of both lower limbs were selected. If only the thigh or leg were deformed, simultaneous surgeries of both lower limbs were selected. The femur deformity was corrected immediately after osteotomy at the deformed plane; the osteotomy fragment was temporarily controlled with an external fixator, which was removed after perform internal fixation with a steel plate. After fibular osteotomy, the Ilizarov frame or Taylor frame was installed on the tibia and fibula. The threaded rods were removed and then tibial osteotomy was performed on the deformed plane. Patients using the Taylor frame did not undergo deformity correction during operation. The external fixators were adjusted starting 7 days after operation to correct the varus, valgus, and rotational deformities of the lower limb. Patients using the Ilizarov frame corrected the rotational deformity of the tibia during operation. The external fixator was adjusted starting 7 days after operation to correct the varus and valgus deformities of the lower limb. During the treatment period, the patient could walk with partial weight-bearing on the operated limb with crutches. The external fixator was removed after the bone healed. Before operation and at last follow-up, the medial proximal tibial angle (MPTA), lateral distal tibial angle (LDTA), posterior proximal tibial angle (PPTA), anterior distal tibial angle (ADTA), anatomic lateral distal femoral angle (aLDFA), posterior distal femoral angle (PDFA), and mechanical axis deviation (MAD), lower limb rotation, limb length discrepancy (LLD) were measured. The self-made scoring criteria were adopted to evaluate the degree of lower limb deformity of the patients.
RESULTS:
All operations were successfully completed, and no complications such as nerve or vascular injury occurred. The adjustment time of the external fixator of the lower limb after operation was 28-46 days, with an average of 37.4 days. The wearing time of the external fixator ranged from 134 to 398 days, with an average of 181.5 days. Mild pin tract infections occurred in 2 limbs. The osteofascial compartment syndrome occurred in 1 limb after operation. No complications related to orthopedic adjustment of the external fixator occurred in other patients. All patients were followed up 6-56 months, with an average of 28.2 months. At last follow-up, full-length films of both lower limbs in the standing position showed that the coronal mechanical axes of the lower limbs of all patients returned to the normal. At last follow-up, MPTA, LDTA, PPTA, aLDFA, PDFA, MAD, lower limb rotation, LLD, and the score of lower limb deformity significantly improved when compared with those before operation ( P<0.05). There was no significant difference in ADTA between pre- and post-operation ( P>0.05). The degree of lower limb deformity were rated as moderate in 2 cases and poor in 27 cases before operation and as excellent in 7 cases, good in 18 cases, and moderate in 4 cases at last follow-up, with an excellent and good rate of 86.2%.
CONCLUSION
For severe lower limb deformities in hypophosphatemic rickets, immediate correction of deformities with femoral osteotomy and internal plate fixation, as well as gradually correction of deformities with tibiofibular osteotomy and circular external fixation (Ilizarov frame or Taylor frame), have satisfactory therapeutic effects.
Humans
;
Male
;
Osteotomy/instrumentation*
;
Female
;
Adult
;
Retrospective Studies
;
Tibia/abnormalities*
;
Adolescent
;
Femur/abnormalities*
;
Middle Aged
;
Fibula/surgery*
;
Rickets, Hypophosphatemic/complications*
;
Young Adult
;
Treatment Outcome
;
External Fixators
;
Bone Plates
;
Lower Extremity Deformities, Congenital/etiology*
7.Segmented Time Study and Optimization Strategy for Clinical Application of Ethos Online Adaptive Radiotherapy.
Dandan ZHANG ; Yuhan KOU ; Shilong ZHU ; Xiaoyu LIU ; Meng NING ; Peichao BAN ; Jinyuan WANG ; Changxin YAN ; Zhongjian JU
Chinese Journal of Medical Instrumentation 2025;49(2):134-140
OBJECTIVE:
To analyze the time characteristics of the Ethos online adaptive radiotherapy (OART) process in clinical practice and provide guidance for the comprehensive optimization of each stage of adaptive radiotherapy.
METHODS:
The study involved 61 patients with cervical, rectal, gastric, lung, esophageal, and breast cancers who underwent Ethos OART. The mean ± standard deviation of segmental time, total time, and target volume for these patients were tracked. The time characteristics for different cancer types were evaluated, and the average time for target and organ at risk (OAR) modifications was compared with the average target volume for each cancer type.
RESULTS:
Cervical cancer born the longest total treatment time, while breast cancer had the shortest. For all cancer types except breast cancer, the modification time for target and OAR was the most time-consuming segment. The average time for target and OAR modifications aligned with the trend of the average target volume.
CONCLUSION
The total treatment time for various cancers ranges from 15 to 35 minutes, indicating room for improvement.
Humans
;
Radiotherapy Planning, Computer-Assisted/methods*
;
Neoplasms/radiotherapy*
;
Female
8.A promising novel local anesthetic for effective anesthesia in oral inflammatory conditions through reducing mitochondria-related apoptosis.
Haofan WANG ; Yihang HAO ; Wenrui GAI ; Shilong HU ; Wencheng LIU ; Bo MA ; Rongjia SHI ; Yongzhen TAN ; Ting KANG ; Ao HAI ; Yi ZHAO ; Yaling TANG ; Ling YE ; Jin LIU ; Xinhua LIANG ; Bowen KE
Acta Pharmaceutica Sinica B 2025;15(11):5854-5866
Local anesthetics (LAs), such as articaine (AT), exhibit limited efficacy in inflammatory environments, which constitutes a significant limitation in their clinical application within oral medicine. In our prior research, we developed AT-17, which demonstrated effective properties in chronic inflammatory conditions and appears to function as a novel oral LA that could address this challenge. In the present study, we further elucidated the beneficial effects of AT-17 in acute inflammation, particularly in oral acute inflammation, where mitochondrial-related apoptosis played a crucial role. Our findings indicated that AT-17 effectively inhibited lipopolysaccharide (LPS)-induced nerve cell apoptosis by ameliorating mitochondrial dysfunction in vitro. This process involved the inhibition of mitochondrial reactive oxygen species (mtROS) production and the subsequent activation of the NRF2 pathway. Most notably, improvements in mitochondria-related apoptosis were key contributors to AT-17's inhibition of voltage-gated sodium channels. Additionally, AT-17 was shown to reduce mtROS production in nerve cells through the Na+/NCLX/ETC signaling axis. In conclusion, we have developed a novel local anesthetic that exhibits pronounced anesthetic functionality under inflammatory conditions by enhancing mitochondria-related apoptosis. This advancement holds considerable promise for future drug development and deepening our understanding of the underlying mechanisms of action.
9.BnaNRT1.5s mediates nitrate transporter to regulate nitrogen use efficiency in Brassica napus.
Shilong CHEN ; Lei YAO ; Rumeng WANG ; Jian ZENG ; Jianghe LI ; Shiyao CUI ; Xu WANG ; Haixing SONG ; Zhenhua ZHANG ; Pan GONG
Chinese Journal of Biotechnology 2025;41(7):2954-2965
Improving the nitrogen use efficiency (NUE) of Brassica napus is of significant importance for achieving the national goal of zero growth in chemical fertilizer application and ensuring the green development of the rapeseed industry. This study aims to explore the effects of the nitrate transporter gene BnaNRT1.5s on the nitrogen transport and NUE of B. napus, providing excellent genetic resources for the development of nitrogen-efficient B. napus varieties. The spatiotemporal expression of BnaA05.NRT1.5 as a key nitrogen responsive gene was profiled by qRT-PCR at different growth stages and for different tissue samples of B. napus 'Westar'. Subcellular localization was employed to examine its expression pattern in the cells. Additionally, CRISPR/Cas9 was used to create BnaNRT1.5s knockout lines, which were subjected to hydroponic experiments under high nitrogen (12.0 mmol/L) and low nitrogen (0.3 mmol/L) conditions. After the seedlings were cultivated for 21 days, root and shoot samples were collected for weighing, nitrogen content determination, xylem sap nitrate content assessment, and calculation of total nitrogen and NUE. The B. napus nitrate transporter BnaA05.NRT1.5 was localized to the cell membrane. During the seedling and early bolting stages, BnaA05.NRT1.5 was predominantly expressed in roots, while it was highly expressed in old leaves and mature silique skin during the reproductive stage. Compared with the wild type, the mutant BnaNRT1.5s showed significant increases in the dry weight and total nitrogen of seedlings under both high and low nitrogen conditions. Under low nitrogen conditions, NUE in the roots of BnaNRT1.5s significantly improved. Notably, under both high and low nitrogen conditions, the nitrate content in the shoots of BnaNRT1.5s decreased significantly, while that in the roots increased significantly, resulting in a significantly decreased shoot-to-root nitrate content ratio. BnaNRT1.5s is involved in regulating the transport of nitrate from the roots to the shoots, and its mutation enhances nitrogen absorption and utilization in B. napus seedlings, promoting seedling growth. This study not only provides references for understanding the physiological and molecular mechanisms by which BnaNRT1.5s regulates NUE but also offers valuable genetic resources for improving NUE in B. napus.
Brassica napus/genetics*
;
Anion Transport Proteins/metabolism*
;
Nitrogen/metabolism*
;
Nitrate Transporters
;
Plant Proteins/metabolism*
;
Nitrates/metabolism*
;
Gene Expression Regulation, Plant
;
Biological Transport
10.Correlation of serum 25 (OH) D3 and IGF-1 levels with glycolipid metabolism and predictive value of retinopathy in elderly patients with type 2 diabetes mellitus
Yanling ZHANG ; Jingjin ZHANG ; Shilong WANG ; Zongying XU ; Juan TAN ; Aihua TONG ; Fangjiang XU
Chinese Journal of Endocrine Surgery 2024;18(3):346-351
Objective:To investigate the correlation between 25-hydroxyvitamin D3 (25 (OH) D3), insulin-like growth factor 1 (IGF-1) and glycolipid metabolism in patients with diabetes 2 mellitus (T2DM), as well as their predictive value in retinopathy.Methods:A total of 120 T2DM patients admitted to Linyi Central Hospital of Shandong Province from Oct. 2020 to Oct.r 2023 were selected as the study objects (defined as the study group). Another 120 healthy volunteers who underwent physical examination in our hospital during the same period were selected as the control group. Serum 25 (OH) D3, IGF-1, fasting blood glucose (FBG), 2 h plasma glucose (2 hPG) ) and lipid levels (triglycerides) were compared between the two groups. The levels of TG, total cholesterol (TC) and serum 25 (OH) D3 and IGF-1 were analyzed by Pearson correlation analysis. At the same time, the patients in the study group were divided into diabetic group with retinopathy (DR Group, 40 cases) and non-retinopathy group (NDR group, 80 cases) according to the status of retinopathy. Multivariate analysis was used to analyze the risk factors affecting the occurrence of retinopathy in T2DM patients, and receiver operating characteristic (ROC) curve was drawn to analyze the predictive value of serum 25 (OH) D3 and IGF-1 levels in the occurrence of retinopathy in T2DM patients.Results:The level of serum 25 (OH) D3 was (36.15±4.25) nmol/L in the study group, lower than that in the control group (51.24±5.32) nmol/L ( P<0.05), and the level of IGF-1 was (30.26±4.52) mg/L was in the study group, higher than that in the control group ( P<0.05). The levels of FBG, 2 hPG, TG and TC in the study group were (8.67±2.52) mmol/L, (11.36±2.43) mmol/L, (2.05±0.72) mmol/L, (5.05±1.54) mmol/L respectively, higher than those in the control group [ (5.02±0.42) mmol/L, (6.32±0.54) mmol/L, (1.21±0.32) mmol/L, (3.42±0.68) mmol/L] ( P<0.05). Pearson correlation analysis showed that serum 25 (OH) D3 levels were negatively correlated with FBG, 2 hPG, TG and TC levels in T2DM patients ( r=-0.762, -0.782, -0.736, -0.721, P<0.05). Serum IGF-1 levels were positively correlated with the levels of FBG, 2 hPG, TG and TC in T2DM patients ( r=0.741, 0.756, 0.715, 0.698, P<0.05). Family history of diabetes in DR group, FBG, 2 hPG, TG, TC, IGF-1 levels was 35.00%, (9.31±2.49) mmol/L, (12.52±2.34) mmol/L, (2.76±0.61) mmol/L, (5.92±1.42) mmol/L, (37.89±4.41) mg/L respectively, higher than those in NDR group [16.25%, (8.35±2.15) mmol/L, (10.78±1.75) mmol/L, (1.69±0.52) mmol/L, (4.62±1.31) mmol/L, (26.45±4.06) mg/L] ( P<0.05). 25 (OH) D3 in DR group was (30.21±3.51) nmol/L, lower than that in NDR group (39.12±3.85) nmol/L ( P<0.05). Logistic regression analysis showed that family history of diabetes mellitus, duration of diabetes mellitus, 25 (OH) D3, IGF-1, FBG, 2hPG, TG and TC levels were all risk factors for the occurrence of retinopathy in elderly T2DM patients ( P<0.05). ROC curve analysis showed that AUC and sensitivity of 25 (OH) D3 and IGF-1 combined to predict retinopathy in elderly T2DM patients were 0.854 and 92.50%, respectively, higher than that of 25 (OH) D3 and IGF-1 alone ( P<0.05) . Conclusion:Serum 25 (OH) D3 and IGF-1 levels are abnormally expressed in elderly patients with T2DM, and there is a close relationship between glucose and lipid metabolism in elderly patients with T2DM, and the combined detection of these indicators has a higher predictive value for the occurrence of DR In elderly patients with T2DM.

Result Analysis
Print
Save
E-mail