1.Injury Mechanism of Three-year-old Child Occupants Based on Traffic Accident Case
Haiyan LI ; Yida WANG ; Lijuan HE ; Wenle LÜ ; Shihai CUI ; Shijie RUAN
Journal of Medical Biomechanics 2024;39(5):978-985
Objective To investigate the injury mechanisms of three-year-old child occupants by reconstructing a real traffic accident.Methods A traffic accident case from the CIREN database was reconstructed using a vehicle finite element model and a three-year-old child occupant injury bionic model(TUST IBMs 3YO-O).The Δv,mass of the vehicle,and deformation energy were comprehensively analyzed to calculate the collision velocity of the vehicle.This accident was simulated to present injuries to a child occupant,and the injury mechanisms were analyzed in depth.Results The TUST IBMs 3YO-O fully reconstructed the injuries of the child occupant in this case.The kinematic and biomechanical responses of the children's heads differed.The biomechanical response of the internal tissues and organs in the chest cavity showed no injury,however,the result ant chest acceleration at 3 ms reached 54 g,which exceeded the threshold.Conclusions In the future,it will be necessary to adopt biomechanical parameters for occupant safety evaluations.The application of human biomechanical models with high biofidelity to reconstruct occupant injuries in traffic accidents can not only be used to observe the kinematic responses of the occupant in the accident and analyze the injury mechanisms in depth,but also to provide references for virtual testing,as well as for the research and development of child occupant protection devices and the formulation of safety regulations.
2.Personalized biomechanical modeling of the human head and validation
Haiyan LI ; Yifan CAO ; Lijuan HE ; Wenle LÜ ; Shihai CUI ; Shijie RUAN
Chinese Journal of Medical Physics 2024;41(7):883-889
The study presents a method for the personalized biomechanical modeling of the human head and validates the generated model.Based on the TUST 50th percentile head biomechanical model,the method utilizes head CT data of the target model,and employs three-dimensional point cloud registration and free-form deformation techniques to rapidly develop a personalized head finite element model with detailed brain tissue structures.By reconstructing classic cadaver tests,it is found that the personalized head biomechanical model created by the proposed method shows a good consistency with the results of cadaver tests in kinematic and biomechanical responses.Furthermore,no significant differences are observed when compared with the head biomechanical model developed using reverse engineering method,thus verifying the effectiveness of the developed model.Consequently,the proposed method can be used to quickly construct personalized head biomechanical models with detailed anatomical structures,providing a fundamental computational analysis tool for researches in injury biomechanics,clinical medicine,and forensic identification.
3.Development and Validation for Thoracic-Abdominal Finite Element Model of Chinese 5th Percentile Female with Detailed Anatomical Structure
Haiyan LI ; Xiaohai SUN ; Lijuan HE ; Linghua RAN ; Wenle LV ; Shihai CUI ; Shijie RUAN
Journal of Medical Biomechanics 2022;37(1):E091-E097
Objective To predict and assess biomechanical responses and injury mechanisms of the thorax and abdomen for small-sized females in vehicle collisions. Methods The accurate geometric model of the thorax and abdomen was constructed based on CT images of Chinese 5th percentile female volunteers. A thoracic-abdominal finite element model of Chinese 5th percentile female with detailed anatomical structure was developed by using the corresponding software. The model was validated by reconstructing three groups of cadaver experiments (namely, test of blunt anteroposterior impact on the thorax, test of bar anteroposterior impact on the abdomen, test of blunt lateral impact on the chest and abdomen). Results The force-deformation curves and injury biomechanical responses of the organs from the simulations were consistent with the cadaver experiment results, which validated effectiveness of the model. Conclusions The model can be used for studying injury mechanisms of the thorax and abdomen for small-sized female, as well as developing small-sized occupant restraint systems and analyzing the forensic cases, which lays foundation for developing the whole body finite element model of Chinese 5th percentile female.
4.Effects of Impact Angle on Head Injury in Six-Year-Old Child Pedestrian-Car Collision
Haiyan LI ; Kun LI ; Yongqiang HUANG ; Lijuan HE ; Shihai CUI ; Wenle LÜ ; Shijie RUAN
Journal of Medical Biomechanics 2021;36(3):E353-E358
Objective To explore the influence of child head injury under different impact angles by applying the finite element model of six-year-old child pedestrian as specified in the European New Car Assessment Programme (Euro NCAP). Methods Based on the finite element model of 6-year-old pedestrian with detailed anatomical structure as specified by the Euro NCAP (TB024), four groups of simulation experiments were set up to explore the mechanism of head injury in children under different impact angles. The initial position for head mass center was on the longitudinal center line of the car. The initial speed of the car was 40 km/h. The car contacted with the model from the direction of the right (0°), the front (90°), the left (180°) and the back (270°). The kinematics differences and head impact responses were compared, and injuries of the facial bone and skull were analyzed. Results Through the analysis of head contact force, acceleration of head mass center, resultant velocity of head mass center with the vehicle, head injury criterion (HIC15), facial bone fracture and skull stress distribution, it was found that the risk of head fracture and brain contusion under back impact and front impact was higher than that under side impact. The risk of head fracture and brain contusion was highest under back impact, while the lowest under side impact. Conclusions Child pedestrian head injury was the largest under back impact. The results have important application values for the assessment and development of car-pedestrian collision protection device.
5.The Influence of Skull Thickness on Intracranial Biomechanical Response
Shijie RUAN ; Chao LI ; Shihai CUI ; Haiyan LI ; Lijuan HE ; LÜWENLE
Journal of Medical Biomechanics 2021;36(4):E560-E567
Objective To study the influence of skull thickness on intracranial biomechanical parameters by finite element method. Methods The female head at 5th percentile was selected for CT scanning to construct finite element model of the head with high biofidelity,and the model was verified by reconstructed cadaver test. The finite element model of the head with different skull thickness was established, and multiple groups of tests were carried out to compare the intracranial mechanical parameters. Results The negative value of intracranial pressure was significantly affected by the decrease in skull thickness under the same head size, while the negative value of intracranial pressure was slightly affected, with an increasing trend. The shear stress and von Mises stress of brain tissues were significantly increased with skull thickness increasing. Conclusions Under the same head size, the skull thickness will affect head injury to a certain extent, and people with small skull thickness are more likely to be injured than those with large skull thickness.
6.The Effect on Head-Neck Injuries of Six-Year-Old Child Occupant by Misusing the Restraint System
Haiyan LI ; Jian LI ; Lijuan HE ; Shihai CUI ; Shijie RUAN
Journal of Medical Biomechanics 2020;35(2):E143-E149
Objective To explore the effect of restraint system misuse on head-neck injuries for rear occupant of 6-year-old children in frontal impact crashes. Methods Based on the previously validated 6-year-old child occupant finite element model, in terms of ECE R44 testing regulations, the impact crash under right and wrong use of restraint system was simulated in Pam-Crash software. Results The force and moment of the neck were the minimum by merely using booster seat, but the maximum intracranial pressure, the maximum stress and the maximum principal strain were larger than their damage threshold and would cause fatal brain damage in child head. The only use of adult safety belt would cause more serious damage in child neck with larger force and moment. Conclusions Two ways of misusing the restraint system would aggravate head-neck injuries of the 6-year-old child. The proper use of the restraint system can provide the best protective effect for head and neck of the 6-year-old child occupant.
7.Research Progress about the Effect of Obesity on Occupant Impact Injury Mechanism
Shihai CUI ; Haitong DUAN ; Haiyan LI ; Lijuan HE ; Wenle LV ; Shijie RUAN
Journal of Medical Biomechanics 2019;34(5):E548-E554
Modern vehicle safety design and safety regulations are mostly based on 50th percentile populations. However, with the increase of obese populations, it is very important to investigate the injury mechanism and protection of obese occupant. Methods such as traffic accidents statistics, cadaver experiments, multi-body modeling and finite element modeling, are currently used to study the injury mechanism of obese occupants. Different hypotheses including cushion effect, body geometrical effect and mass increasing effect have been put forward to explain the effect of obesity on occupant injury mechanism, which means that its mechanism is still uncertain. The impact injury mechanisms of obese occupant were comprehensively summarized. Furthermore, the problems confronted by the research of current obese occupant impact injury and future investigations were proposed in this study.
8.Effects of Dynamic Brain Response under Different Setting of Skull-Brain Interface and Mesh Density Division of Cerebrospinal Fluid
Bei LI ; Shijie RUAN ; Haiyan LI ; Shihai CUI ; Lijuan HE ; Wenle LV
Journal of Medical Biomechanics 2019;34(6):E586-E593
Objective To explore the effects of different skull-brain interfaces and mesh density of the cerebrospinal fluid (CSF) on dynamic responses of the brain. Methods The impact kinematics on cadaver head under rotation and translation impacts were reconstructed based on the 50th percentile adult head finite element model. The interfaces between skull and CSF, CSF and brain were modeled with different types of interfaces, which were set as sharing nodes, tied, frictionless sliding, so as to investigate the effect of different interface types on dynamic responses of the brain. Then, the interfaces between CSF, skull and brain were set as sharing nodes, while CSF was divided into single-layer and tri-layer of hexahedral element with the constant thickness of CSF, to study influences of CSF with different mesh density layers on dynamic responses of the brain. Results The intracranial pressure was highly sensitive to the interface types, while the brain response seemed to be relatively insensitive to the variation in CSF layers. Conclusions The research findings provide theoretical references for the construction of CSF and the selection of skull-brain contact interface of the head finite element model.
9.Effects of Neck Restrain on Traumatic Brain Injury of Child Occupant During Airbag Inflation
Shijie RUAN ; Haidong WANG ; Haiyan LI ; Wenle LV ; Shihai CUI ; Lijuan HE
Journal of Medical Biomechanics 2019;34(1):E001-E006
Objective To study the effect of neck restrain on traumatic brain injury during airbag inflation in traffic accidents. Methods Based on the previously validated 3-year-old child head finite element (FE) model, the impact on out-of-position (OOP) child occupant during airbag inflation was simulated by FE method, so as to investigate the effects of neck restraint on intracranial response and injury mechanism in traffic accidents. Results The head kinematics with neck restrain was different from that without neck restrain under the impact of airbag inflation. The neck restraint would obviously decrease the maximum Von Mises stress of pediatric brain. When airbag-head distance was 20 cm or 25 cm, the neck restraint would obviously decrease the maximum intracranial pressure. Conclusions Neck restraint had a relatively large influence on pediatric intracranial response. When the FE method is used to predict pediatric craniocerebral injury, consideration of neck restrain on child brain response is necessary.
10.Research on thorax impact injury of children at different ages based on finite element models.
Shihai CUI ; Xu HAN ; Haiyan LI ; Wenle LU ; Lijuan HE ; Shijie RUAN
Journal of Biomedical Engineering 2018;35(5):713-719
The pediatric cadaver impact experiments were reconstructed using the validated finite element(FE) models of the 3-year-old and 6-year-old children. The effect of parameters, such as hammer size, material parameters and thorax anatomical structure characteristics, on the impact mechanical responses of 3-year-old and 6-year-old pediatric thorax was discussed by designing reasonable finite element simulation experiments. The research results showed that the variation of thorax contact peak force for 3-year-old group was far larger than that of 6-year-old group when the child was impacted by hammers with different size, which meant that 3-year-old child was more sensitive to hammer size. The mechanical properties of thoracic organs had little influence on the thorax injury because of the small difference between 3-year-old and 6-year-old child in this research. During the impact, rib deformation led to different impact location and deformation of internal organs because the 3-year-old and 6-year-old children had different geometrical anatomical structures, such as different size of internal organs. Therefore, the injury of internal organs in the two groups was obviously different. It is of great significance to develop children finite element models with high biofidelity according to its real anatomical structures.

Result Analysis
Print
Save
E-mail