1.A Practical Approach to Genetic Hypokalemia.
Shih Hua LIN ; Sung Sen YANG ; Tom CHAU
Electrolytes & Blood Pressure 2010;8(1):38-50
Mutations in genes encoding ion channels, transporters, exchangers, and pumps in human tissues have been increasingly reported to cause hypokalemia. Assessment of history and blood pressure as well as the K+ excretion rate and blood acid-base status can help differentiate between acquired and inherited causes of hypokalemia. Familial periodic paralysis, Andersen's syndrome, congenital chloride-losing diarrhea, and cystic fibrosis are genetic causes of hypokalemia with low urine K+ excretion. With respect to a high rate of K+ excretion associated with faster Na+ disorders (mineralocorticoid excess states), glucoricoid-remediable aldosteronism and congenital adrenal hyperplasia due to either 11beta-hydroxylase and 17alpha-hydroxylase deficiencies in the adrenal gland, and Liddle's syndrome and apparent mineralocorticoid excess in the kidney form the genetic causes. Among slow Cl- disorders (normal blood pressure, low extracellular fluid volume), Bartter's and Gitelman's syndrome are most common with hypochloremic metabolic alkalosis. Renal tubular acidosis caused by mutations in the basolateral Na+/HCO3 - cotransporter (NBC1) in the proximal tubules, apical H+-ATPase pump, and basolateral Cl-/HCO3 - exchanger (anion exchanger 1, AE1) in the distal tubules and carbonic anhydroase II in both are genetic causes with hyperchloremic metabolic acidosis. Further work on genetic causes of hypokalemia will not only provide a much better understanding of the underlying mechanisms, but also set the stage for development of novel therapies in the future.
Acid-Base Equilibrium
;
Acidosis
;
Acidosis, Renal Tubular
;
Adrenal Glands
;
Adrenal Hyperplasia, Congenital
;
Aldosterone
;
Alkalosis
;
Blood Pressure
;
Carbon
;
Cystic Fibrosis
;
Diarrhea
;
Extracellular Fluid
;
Humans
;
Hyperaldosteronism
;
Hypokalemia
;
Hypotension
;
Ion Channels
;
Kidney
;
Mineralocorticoid Excess Syndrome, Apparent
;
Paralyses, Familial Periodic
;
Renin
2.Soft Tissue Infection Caused by Rapid Growing Mycobacterium following Medical Procedures: Two Case Reports and Literature Review.
Shih Sen LIN ; Chin Cheng LEE ; Tsrang Neng JANG
Annals of Dermatology 2014;26(2):236-240
Non-tubecrulosis mycobacterium infections were increasingly reported either pulmonary or extrapulmonary in the past decades. In Taiwan, we noticed several reports about the soft tissue infections caused by rapid growing mycobacterium such as Mycobacterium abscessus, Mycobacterium chelonae, on newspaper, magazines, or the multimedia. Most of them occurred after a plastic surgery, and medical or non-medical procedures. Here, we reported two cases of these infections following medical procedures. We also discussed common features and the clinical course of the disease, the characteristics of the infected site, and the treatment strategy. The literatures were also reviewed, and the necessity of the treatment guidelines was discussed.
Multimedia
;
Mycobacterium chelonae
;
Mycobacterium Infections
;
Mycobacterium*
;
Periodicals
;
Periodicals as Topic
;
Soft Tissue Infections*
;
Surgery, Plastic
;
Taiwan
3.The development of Taiwan Fracture Liaison Service network
Lo Yu CHANG ; Keh Sung TSAI ; Jen Kuei PENG ; Chung Hwan CHEN ; Gau Tyan LIN ; Chin Hsueh LIN ; Shih Te TU ; I Chieh MAO ; Yih Lan GAU ; Hsusan Chih LIU ; Chi Chien NIU ; Min Hong HSIEH ; Jui Teng CHIEN ; Wei Chieh HUNG ; Rong Sen YANG ; Chih Hsing WU ; Ding Cheng CHAN
Osteoporosis and Sarcopenia 2018;4(2):45-50
Osteoporosis and its associated fragility fractures are becoming a severe burden in the healthcare system globally. In the Asian-Pacific (AP) region, the rapidly increasing in aging population is the main reason accounting for the burden. Moreover, the paucity of quality care for osteoporosis continues to be an ongoing challenge. The Fracture Liaison Service (FLS) is a program promoted by International Osteoporosis Foundation (IOF) with a goal to improve quality of postfracture care and prevention of secondary fractures. In this review article, we would like to introduce the Taiwan FLS network. The first 2 programs were initiated in 2014 at the National Taiwan University Hospital and its affiliated Bei-Hu branch. Since then, the Taiwan FLS program has continued to grow exponentially. Through FLS workshops promoted by the Taiwanese Osteoporosis Association (TOA), program mentors have been able to share their valuable knowledge and clinical experience in order to promote establishments of additional programs. With 22 FLS sites including 11 successfully accredited on the best practice map, Taiwan remains as one of the highest FLS coverage countries in the AP region, and was also granted the IOF Best Secondary Fracture Prevention Promotion award in 2017. Despite challenges faced by the TOA, we strive to promote more FLS sites in Taiwan with a main goal of ameliorating further health burden in managing osteoporotic patients.
Aging
;
Awards and Prizes
;
Delivery of Health Care
;
Education
;
Financing, Organized
;
Humans
;
Mentors
;
Osteoporosis
;
Practice Guidelines as Topic
;
Taiwan
4.Asia-Pacific consensus on long-term and sequential therapy for osteoporosis
Ta-Wei TAI ; Hsuan-Yu CHEN ; Chien-An SHIH ; Chun-Feng HUANG ; Eugene MCCLOSKEY ; Joon-Kiong LEE ; Swan Sim YEAP ; Ching-Lung CHEUNG ; Natthinee CHARATCHAROENWITTHAYA ; Unnop JAISAMRARN ; Vilai KUPTNIRATSAIKUL ; Rong-Sen YANG ; Sung-Yen LIN ; Akira TAGUCHI ; Satoshi MORI ; Julie LI-YU ; Seng Bin ANG ; Ding-Cheng CHAN ; Wai Sin CHAN ; Hou NG ; Jung-Fu CHEN ; Shih-Te TU ; Hai-Hua CHUANG ; Yin-Fan CHANG ; Fang-Ping CHEN ; Keh-Sung TSAI ; Peter R. EBELING ; Fernando MARIN ; Francisco Javier Nistal RODRÍGUEZ ; Huipeng SHI ; Kyu Ri HWANG ; Kwang-Kyoun KIM ; Yoon-Sok CHUNG ; Ian R. REID ; Manju CHANDRAN ; Serge FERRARI ; E Michael LEWIECKI ; Fen Lee HEW ; Lan T. HO-PHAM ; Tuan Van NGUYEN ; Van Hy NGUYEN ; Sarath LEKAMWASAM ; Dipendra PANDEY ; Sanjay BHADADA ; Chung-Hwan CHEN ; Jawl-Shan HWANG ; Chih-Hsing WU
Osteoporosis and Sarcopenia 2024;10(1):3-10
Objectives:
This study aimed to present the Asia-Pacific consensus on long-term and sequential therapy for osteoporosis, offering evidence-based recommendations for the effective management of this chronic condition.The primary focus is on achieving optimal fracture prevention through a comprehensive, individualized approach.
Methods:
A panel of experts convened to develop consensus statements by synthesizing the current literature and leveraging clinical expertise. The review encompassed long-term anti-osteoporosis medication goals, first-line treatments for individuals at very high fracture risk, and the strategic integration of anabolic and anti resorptive agents in sequential therapy approaches.
Results:
The panelists reached a consensus on 12 statements. Key recommendations included advocating for anabolic agents as the first-line treatment for individuals at very high fracture risk and transitioning to anti resorptive agents following the completion of anabolic therapy. Anabolic therapy remains an option for in dividuals experiencing new fractures or persistent high fracture risk despite antiresorptive treatment. In cases of inadequate response, the consensus recommended considering a switch to more potent medications. The consensus also addressed the management of medication-related complications, proposing alternatives instead of discontinuation of treatment.
Conclusions
This consensus provides a comprehensive, cost-effective strategy for fracture prevention with an emphasis on shared decision-making and the incorporation of country-specific case management systems, such as fracture liaison services. It serves as a valuable guide for healthcare professionals in the Asia-Pacific region, contributing to the ongoing evolution of osteoporosis management.