1.Mechanism of Yizhi Qingxin Prescription in Regulating PKA/CaN Pathway to Improve Cognitive Function in Alzheimer's Disease Model Mice
Xiaochen GUO ; Jiangang LIU ; Dandan SHI ; Ziqi NING ; Yaoyao ZHANG ; Fang LIU ; Meixia LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):97-108
ObjectiveTo explore the mechanism by which Yizhi Qingxin prescription improves mitochondrial dysfunction in Alzheimer's disease (AD) through regulating mitochondrial Ca2+ homeostasis and kinetic balance based on the protein kinase A (PKA)/calcineurin (CaN) signaling pathway. MethodsSixty three-month-old amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice were randomly divided into a model group, a donepezil group(0.65 mg·kg-1), a low-dose Yizhi Qingxin prescription group (YQF-L,2.6 g·kg-1), a medium-dose Yizhi Qingxin prescription group (YQF-M,5.2 g·kg-1), and a high-dose Yizhi Qingxin prescription group (YQF-H,10.4 g·kg-1), with 12 mice in each group. Twelve C57BL/6J mice with the same genetic background served as a normal group. Each treatment group received gavage administration daily, with the model and normal groups receiving equal volume of physiological saline. Intervention continued for 12 consecutive weeks. The learning and memory abilities of the mice were assessed using the novel object recognition (NOR) and Morris water maze (MWM) tests. Hematoxylin-eosin (HE)/Nissl staining was used to observe histopathological changes in the hippocampus. Transmission electron microscopy (TEM) was used to observe mitochondrial ultrastructure. Fluo-4 acetoxymethyl ester (Fluo-4 AM) Ca2+ probe was used to measure intracellular Ca2+ concentration in brain tissue. Western blot was used to determine the protein expression of PKA, CaN, sodium/calcium/lithium exchanger (NCLX), mitochondrial calcium uniporter (MCU), calmodulin (CaM), dynamin-related protein 1 (Drp1), and phosphorylated dynamin-related protein 1 (serine 637 site) [p-Drp1(S637)] in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to measure the expression of PKA, CaN, CaM, NCLX, MCU, and Drp1 mRNAs. ResultsCompared with those in the normal group, the recognition index (RI) of the model group decreased (P0.01), and the number of crossings through the original platform area, the duration of stay in the target quadrant, and the distance were reduced (P0.01). The protein expression of PKA, NCLX, and p-DRP1 (ser637) significantly decreased (P0.05), and the mRNA expression of PKA and NCLX significantly decreased (P0.05). The escape latency (EL) was prolonged (P0.05), and the intracellular Ca2+ level significantly increased (P0.01). The protein expression of CaN, CaM, MCU, and Drp1, as well as the mRNA expression of CaN, MCU, and Drp1, significantly increased (P0.05). After intervention with Donepezil and Yizhi Qingxin prescription, compared with that in the model group, the RI of the treatment group significantly increased (P0.05), and the number of crossings through the platform and the duration of stay in the target quadrant significantly increased (P0.05). The protein expression of PKA, NCLX, and p-Drp1 (ser637) and the mRNA expression of PKA and NCLX significantly increased (P0.05). On the 4th and 5th days, the EL was shortened (P0.05), and the intracellular Ca2+ level decreased (P0.05). The protein expression of CaN, CaM, MCU, and Drp1 and the mRNA expression of CaN, MCU, and Drp1 significantly decreased (P0.05). ConclusionYizhi Qingxin prescription regulates the PKA/CaN pathway, upregulates the expression of PKA, NCLX, and p-Drp1 (ser637) proteins, reduces the expression of CaN, CaM, MCU, and Drp1 proteins, and regulates Ca2+ homeostasis and mitochondrial dynamic balance, thereby enhancing the spatial learning and memory abilities of AD mice.
2.Mechanism of Yizhi Qingxin Prescription in Regulating PKA/CaN Pathway to Improve Cognitive Function in Alzheimer's Disease Model Mice
Xiaochen GUO ; Jiangang LIU ; Dandan SHI ; Ziqi NING ; Yaoyao ZHANG ; Fang LIU ; Meixia LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):97-108
ObjectiveTo explore the mechanism by which Yizhi Qingxin prescription improves mitochondrial dysfunction in Alzheimer's disease (AD) through regulating mitochondrial Ca2+ homeostasis and kinetic balance based on the protein kinase A (PKA)/calcineurin (CaN) signaling pathway. MethodsSixty three-month-old amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice were randomly divided into a model group, a donepezil group(0.65 mg·kg-1), a low-dose Yizhi Qingxin prescription group (YQF-L,2.6 g·kg-1), a medium-dose Yizhi Qingxin prescription group (YQF-M,5.2 g·kg-1), and a high-dose Yizhi Qingxin prescription group (YQF-H,10.4 g·kg-1), with 12 mice in each group. Twelve C57BL/6J mice with the same genetic background served as a normal group. Each treatment group received gavage administration daily, with the model and normal groups receiving equal volume of physiological saline. Intervention continued for 12 consecutive weeks. The learning and memory abilities of the mice were assessed using the novel object recognition (NOR) and Morris water maze (MWM) tests. Hematoxylin-eosin (HE)/Nissl staining was used to observe histopathological changes in the hippocampus. Transmission electron microscopy (TEM) was used to observe mitochondrial ultrastructure. Fluo-4 acetoxymethyl ester (Fluo-4 AM) Ca2+ probe was used to measure intracellular Ca2+ concentration in brain tissue. Western blot was used to determine the protein expression of PKA, CaN, sodium/calcium/lithium exchanger (NCLX), mitochondrial calcium uniporter (MCU), calmodulin (CaM), dynamin-related protein 1 (Drp1), and phosphorylated dynamin-related protein 1 (serine 637 site) [p-Drp1(S637)] in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to measure the expression of PKA, CaN, CaM, NCLX, MCU, and Drp1 mRNAs. ResultsCompared with those in the normal group, the recognition index (RI) of the model group decreased (P0.01), and the number of crossings through the original platform area, the duration of stay in the target quadrant, and the distance were reduced (P0.01). The protein expression of PKA, NCLX, and p-DRP1 (ser637) significantly decreased (P0.05), and the mRNA expression of PKA and NCLX significantly decreased (P0.05). The escape latency (EL) was prolonged (P0.05), and the intracellular Ca2+ level significantly increased (P0.01). The protein expression of CaN, CaM, MCU, and Drp1, as well as the mRNA expression of CaN, MCU, and Drp1, significantly increased (P0.05). After intervention with Donepezil and Yizhi Qingxin prescription, compared with that in the model group, the RI of the treatment group significantly increased (P0.05), and the number of crossings through the platform and the duration of stay in the target quadrant significantly increased (P0.05). The protein expression of PKA, NCLX, and p-Drp1 (ser637) and the mRNA expression of PKA and NCLX significantly increased (P0.05). On the 4th and 5th days, the EL was shortened (P0.05), and the intracellular Ca2+ level decreased (P0.05). The protein expression of CaN, CaM, MCU, and Drp1 and the mRNA expression of CaN, MCU, and Drp1 significantly decreased (P0.05). ConclusionYizhi Qingxin prescription regulates the PKA/CaN pathway, upregulates the expression of PKA, NCLX, and p-Drp1 (ser637) proteins, reduces the expression of CaN, CaM, MCU, and Drp1 proteins, and regulates Ca2+ homeostasis and mitochondrial dynamic balance, thereby enhancing the spatial learning and memory abilities of AD mice.
3.Mechanism of Dangui Shaoyaosan in Alleviating Inflammatory Responses in Diabetic Kidney Disease by Modulating Macrophage Polarization in Kidneys of db/db Mice
Luyu HOU ; Linlin ZHENG ; Wenjing SHI ; Zixuan WANG ; Shilong GUO ; Zhe LYU ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):1-10
ObjectiveTo observe the effects of Danggui Shaoyaosan on macrophage polarization and renal inflammation in db/db mice with diabetic kidney disease (DKD), and to explore its renal protective effects and underlying mechanisms. MethodsEight db/m mice were assigned to the normal group, and forty db/db mice were randomly divided into a model group, low-, medium-, and high-dose Danggui Shaoyaosan groups (8.39, 16.77, 33.54 g·kg-1), and an irbesartan group (0.025 g·kg-1). All mice were administered treatment by gavage for 12 consecutive weeks. General conditions of the mice were observed during the intervention. At the end of the 12-week intervention, 24-h urine samples were collected using metabolic cages, after which the mice were anesthetized for sample collection. Blood was collected by enucleation and centrifuged to obtain serum for the determination of glycated serum protein (GSP), serum creatinine (SCr), blood urea nitrogen (BUN), total cholesterol (TC), and triglycerides (TG). The urinary albumin-to-creatinine ratio (UACR) was measured. Renal pathological changes were observed using hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and Masson staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), and monocyte chemoattractant protein-1 (MCP-1) levels. Immunofluorescence (IF) was performed to detect F4/80 expression in renal tissue, and immunohistochemistry (IHC) was used to assess CD206 expression. Real-time quantitative polymerase chain reaction (Real-time PCR) was employed to measure the mRNA expression of TNF-α, IL-10, inducible nitric oxide synthase (iNOS), and arginase-1 (Arg-1). Western blot analysis was used to detect the protein expression of iNOS, Arg-1, CD86, and CD206 in renal tissue. ResultsCompared with the normal group, the model group showed increased levels of GSP, UACR, SCr, BUN, TC, and TG, elevated levels of the inflammatory factor TNF-α and the chemokine MCP-1, and decreased IL-10 levels (P<0.01). Pathological examination revealed glomerular hypertrophy, mesangial cell proliferation with marked mesangial expansion, inflammatory cell infiltration, vacuolar degeneration of renal tubular epithelial cells, prominent glycogen deposition, and increased collagen fiber deposition. In addition, relative F4/80 fluorescence intensity was enhanced, CD206 expression in the glomeruli and renal interstitium was reduced, and TNF-α and iNOS mRNA expression was increased. IL-10 and Arg-1 mRNA expression was decreased, iNOS and CD86 protein expression was increased, and Arg-1 and CD206 protein expression was decreased (P<0.05, P<0.01). Compared with the model group, the Danggui Shaoyaosan groups and the irbesartan group showed decreased levels of GSP, UACR, SCr, BUN, TC, and TG, reduced serum TNF-α and MCP-1 levels, and increased IL-10 levels. Renal pathological damage was improved to varying degrees. Relative F4/80 fluorescence intensity was reduced, CD206 expression in the glomeruli and renal interstitium was increased, and TNF-α and iNOS mRNA expression was decreased. IL-10 and Arg-1 mRNA expression was increased, iNOS and CD86 protein expression was reduced, and Arg-1 and CD206 protein expression was increased (P<0.05, P<0.01). ConclusionDanggui Shaoyaosan can improve renal function and alleviate renal pathological damage in db/db mice. Its mechanism may be related to inhibiting M1 pro-inflammatory macrophage polarization, promoting M2 anti-inflammatory macrophage polarization, reducing inflammatory responses, delaying the progression of renal fibrosis, improving renal pathological injury, and thereby exerting renal protective effects.
4.Mechanism of Danggui Shaoyaosan in Improving Inflammatory Response in Mice with Diabetic Kidney Disease Based on TLR4/p65/NLRP3 Signaling Pathway
Shilong GUO ; Ruijia LI ; Zixuan WANG ; Xinai WANG ; Luyu HOU ; Wenjing SHI ; Mengyuan TIAN ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):19-27
ObjectiveTo investigate the effect of Danggui Shaoyaosan on the expression of Toll-like receptor 4/nuclear factor-kappa B p65/NOD-like receptor protein 3 (TLR4/NF-κB p65/NLRP3) signaling pathway in the renal tissues of db/db mice with spontaneous diabetes, and to explore the potential mechanism by which Danggui Shaoyaosan alleviates inflammation in diabetic kidney disease (DKD). MethodsThirty db/db mice were divided into five groups: A model group, Danggui Shaoyaosan low- (16.77 g·kg-1·d-1), medium- (33.54 g·kg-1·d-1), and high-dose (67.08 g·kg-1·d-1) intervention groups, as well as an irbesartan group (0.025 g·kg-1·d-1) by the random number table method, with 6 mice in each group. Additionally, 6 db/m mice were assigned to the normal group. After 8 weeks of intervention, the following parameters were determined by corresponding methods: body weight, fasting blood glucose (FBG), 24-hour urinary protein (24 h-UTP), and serum creatinine (SCr) levels, renal histopathological analysis by hematoxylin-eosin (HE) staining, Masson staining, and periodic acid-Schiff (PAS) staining, the protein and mRNA expression levels of TLR4, NF-κB p65, NLRP3, tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-18 (IL-18) by Western blot and Real-time quantitative polymerase chain reaction (Real-time PCR), as well as TLR4, NF-κB p65, and NLRP3 protein expression in renal tissues by immunohistochemistry (IHC). ResultsCompared with the normal group, the model group exhibited increased body weight, FBG, 24 h-UTP, and SCr levels (P<0.05); disordered renal structure, thickened basement membrane, and interstitial inflammatory cell infiltration, elevated TLR4, NF-κB p65, NLRP3, TNF-α, IL-1β, IL-6, and IL-18 expression; as well as decreased IL-10 expression (P<0.05). Compared with the model group, these pathological changes and biochemical abnormalities were reversed in the medicine intervention groups to varying degrees (P<0.05). ConclusionDanggui Shaoyaosan may delay DKD progression by alleviating renal inflammatory response and reducing urinary protein excretion via modulating the TLR4/NF-κB p65/NLRP3 signaling pathway.
5.Research advances in mitochondrial dysfunction in the pathogenesis of hepatic fibrosis
Yudie HONG ; Jinchen GUO ; Weibing SHI ; Yujie SUN ; Jiamin WANG ; Tiantian GAO
Journal of Clinical Hepatology 2026;42(1):190-196
Hepatic fibrosis refers to excessive accumulation and abnormal proliferation of fibrous connective tissue in the liver triggered by multiple pathogenic factors, and it may progress to liver cirrhosis, portal hypertension, and liver cancer. The pathological mechanisms of hepatic fibrosis involve hepatocyte injury, inflammatory cell infiltration with the release of inflammatory mediators, hepatic stellate cell activation, and extracellular matrix deposition. Recent studies have focused on mitochondrial dysfunction in disease progression, including the molecular pathways for hepatic fibrosis driven by metabolic disorders, energy deficiency, oxidative stress, mitochondrial dynamic imbalance, and autophagic dysfunction, all of which can induce liver injury. This article reviews the latest advances in hepatic fibrosis, in order to provide new therapeutic strategies for clinical management.
6.PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in nasopharyngeal carcinoma
Ranran FENG ; Yilin GUO ; Meilin CHEN ; Ziying TIAN ; Yijun LIU ; Su JIANG ; Jieyu ZHOU ; Qingluan LIU ; Xiayu LI ; Wei XIONG ; Lei SHI ; Songqing FAN ; Guiyuan LI ; Wenling ZHANG
Journal of Pathology and Translational Medicine 2025;59(1):68-83
Background:
Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.
Methods:
We collected clinical samples of NPC to verify the relationship between PLUNC and PD-L1. PLUNC plasmid was transfected into NPC cells, and the variation of PD-L1 was verified by western blot and immunofluorescence. In NPC cells, we verified the relationship of PD-L1, activating transcription factor 3 (ATF3), and β-catenin by western blot and immunofluorescence. Later, we further verified that PLUNC regulates PD-L1 through β-catenin. Finally, the effect of PLUNC on β-catenin was verified by co-immunoprecipitation (Co-IP).
Results:
We found that PLUNC expression was lower in NPC tissues than in paracancer tissues. PD-L1 expression was opposite to that of PLUNC. Western blot and immunofluorescence showed that β-catenin could upregulate ATF3 and PD-L1, while PLUNC could downregulate ATF3/PD-L1 by inhibiting the expression of β-catenin. PLUNC inhibits the entry of β-catenin into the nucleus. Co-IP experiments demonstrated that PLUNC inhibited the interaction of DEAD-box helicase 17 (DDX17) and β-catenin.
Conclusions
PLUNC downregulates the expression of PD-L1 by inhibiting the interaction of DDX17/β-catenin in NPC.
7.Depressive symptoms and associated factors among middle school and college students from 2021 to 2023 in Hunan Province
Chinese Journal of School Health 2025;46(1):96-101
Objective:
To investigate the current status and trends of depressive symptoms among middle school and college students in Hunan Province, and to explore the primary related factors of depressive symptoms, so as to provide a scientific basis for strengthening mental health among students.
Methods:
A total of 279 382 students in Hunan Province were selected through a stratified cluster random sampling method from 2021 to 2023. National Survey Questionnaire on Common Diseases and Health Influencing Factors among Students was adopted for the survey, and the Center for Epidemiological Studies Depression Scale was used to assess their depressive symptoms. The χ 2 test and trend χ 2 test were used to analyze depressive symptoms prevalence and trends, and multivariable Logistic regression was used to analyze the related factors of depressive symptoms.
Results:
The prevalence of depressive symptoms among students in Hunan Province from 2021 to 2023 were 19.66%, 20.17% and 21.47%, respectively, showing an upward trend ( χ 2 trend =9.07, P <0.01). In addition, the results of the multivariable Logistic regression analysis showed that students with healthy diet ( OR=0.43, 95%CI =0.40-0.45), adequate sleep ( OR=0.88, 95%CI =0.86-0.90), and acceptable screen time ( OR=0.61, 95%CI =0.60-0.62) had lower risks in depressive symptoms detection, while students with smoking ( OR= 1.95, 95%CI =1.88-2.02), secondhand smoke exposure ( OR=1.33, 95%CI =1.30-1.36) and Internet addiction ( OR= 4.19 , 95%CI =4.05-4.34) had higher risks in depressive symptoms detection, with differences in the degree of association among different genders, educational stages and urban rural groups ( OR=0.40-6.04, Z =-12.69-11.98) ( P <0.05).
Conclusions
There is an increasing trend of depressive symptoms among middle school and college students in Hunan Province from 2021 to 2023.Targeted depression prevention measures should be taken for students with different demographic characteristics to promote their mental health.
8.Relationship of family function with sleep quality and externalizing problem behaviors among preschool children
LU Yanping, GUO Shi, ZHOU Mingyue, ZHU Dongmei, YU Yizhen
Chinese Journal of School Health 2025;46(1):106-110
Objective:
To explore the relationship of family function with sleep and externalizing problem behaviors of preschool children, so as to provide a guidance for externalizing problem prevention and intervention among preschool children.
Methods:
From October 2023 to January 2024, a convenience sampling method was used to select 5 138 preschool children from kindergartens in 8 districts of Wuhan City, Hubei Province. Parents completed the survey for Family Adaptability and Cohesion Scale, children s sleep habits and Child Behavior Checklist (CBCL). Spearman correlation analysis was used to examine the correlation of family function with scores of sleep quality and externalizing problem behaviors among preschool children. A mediation model analysis and bootstrap test were conducted to further investigate the mediating role of sleep quality between family function and externalizing problem behaviors. Mplus 8.7 software was used for latent profile analysis of family function.
Results:
The reported rates of poor sleep quality and externalizing problem behaviors among preschool children were 11.8% ( n =607), 20.0% ( n =1 026). The relevant analysis results showed that family function was negatively correlated with sleep quality and externalizing problem behaviors ( r = -0.20, -0.23), and sleep quality was positively correlated with externalizing problem behaviors ( r =0.27) ( P <0.01). The mediation effect test showed that family function negatively predicted externalizing problem behaviors ( β =-0.079) and sleep quality ( β = -0.075), while sleep quality positively predicted externalizing problem behaviors ( β =0.215) ( P <0.01). The latent profile analysis results showed that family function could be classified into 4 categories: high family function group (23.01%), upper middle family function group (44.65%), moderate family function group (26.24%) and low family function group (6.11%). Compared to high family function, the other three categories significantly positively predicted externalizing problem behaviors, and the mediating effects of sleep quality on different categories of family function were statistically significant [upper middle family function: mediation effect value was 0.022 (95% CI =0.004-0.041) and direct effect value was 0.329 (95% CI =0.263-0.396); middle family function: mediation effect value was 0.087 (95% CI =0.063-0.115) and direct effect value was 0.491 (95% CI =0.416-0.565); low family function: mediation effect value was 0.144 (95% CI =0.107-0.185) and direct effect 0.621 (95% CI =0.503-0.740)] ( P < 0.05 ).
Conclusion
Family function negatively predicts the externalizing problem behaviors of preschool children, and sleep quality plays a partial mediating role.
9.Network pharmacology-based mechanism of combined leech and bear bile on hepatobiliary diseases
Chen GAO ; Yu-shi GUO ; Xin-yi GUO ; Ling-zhi ZHANG ; Guo-hua YANG ; Yu-sheng YANG ; Tao MA ; Hua SUN
Acta Pharmaceutica Sinica 2025;60(1):105-116
In order to explore the possible role and molecular mechanism of the combined action of leech and bear bile in liver and gallbladder diseases, this study first used network pharmacology methods to screen the components and targets of leech and bear bile, as well as the related target genes of liver and gallbladder diseases. The selected key genes were subjected to interaction network and GO/KEGG enrichment analysis. Then, using sodium oleate induced HepG2 cell lipid deposition model and
10.Role of amino acid metabolism in autoimmune hepatitis and related therapeutic targets
Peipei GUO ; Yang XU ; Jiaqi SHI ; Yang WU ; Lixia LU ; Bin LI ; Xiaohui YU
Journal of Clinical Hepatology 2025;41(3):547-551
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease. The pathogenesis of AIH remains unclear, but it is mainly autoimmune injury caused by the breakdown of autoimmune tolerance due to the abnormal activation of the immune system, while the specific molecular mechanism remains unknown. Recent studies have shown that abnormal amino acid metabolism plays an important role in the development and progression of AIH. This article reviews the research advances in amino acid metabolic reprogramming in AIH, in order to provide a theoretical basis for amino acid metabolism as a new target for the clinical diagnosis and treatment of AIH.


Result Analysis
Print
Save
E-mail