1.Discovery of a potent FKBP38 agonist that ameliorates HFD-induced hyperlipidemia
Ping-Ting XIAO ; Zhi-Shen XIE ; Yu-Jia KUANG ; Shi-Yu LIU ; Chun ZENG ; Ping LI ; E-Hu LIU
Acta Pharmaceutica Sinica B 2021;11(11):3542-3552
The mammalian target of rapamycin (mTOR)-sterol regulatory element-binding proteins (SREBPs) signaling promotes lipogenesis. However, mTOR inhibitors also displayed a significant side effect of hyperlipidemia. Thus, it is essential to develop mTOR-specific inhibitors to inhibit lipogenesis. Here, we screened the endogenous inhibitors of mTOR, and identified that FKBP38 as a vital regulator of lipid metabolism. FKBP38 decreased the lipid content
2.Molecular Identification of Bupleurum chinense Seeds Based on DNA Barcoding Technology
Qing ZHAO ; Hong-bo XIE ; La YANG ; Miao-jie WEI ; Lin-chun SHI ; Jin-xin LIU ; Chun-ying ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2020;26(14):182-189
Objective:To establish a molecular identification method for
3.Progress in research of 2019-nCoV Omicron variant.
Yun HUANG ; Yi Hong LI ; Shi La XIE ; Zu Hua RONG ; Bo Sheng LI ; Min KANG ; Ai Ping DENG ; Yan LI
Chinese Journal of Epidemiology 2022;43(5):655-662
2019-nCoV Omicron (B.1.1.529) variant, which has brought new challenges to the prevention and control of COVID-19 pandemic, has the characteristics of stronger transmissibility and more rapid transmission and more significant immune evasion. It took only two months to become a predominant strain worldwide after its identification in South Africa in November 2021. Local epidemics caused by Omicron variant have been reported in several provinces in China. However, the epidemiological characteristics of highly mutated Omicron variant remain unclear. This article summarizes the progress in the research of functional mutations, transmissibility, virulence, immune evasion and cross-reactive immune responses of Omicron variant, to provide references for the effective prevention and control of COVID-19 pandemic caused by Omicron variant.
COVID-19
;
Humans
;
Mutation
;
Pandemics
;
SARS-CoV-2
4.A human circulating immune cell landscape in aging and COVID-19.
Yingfeng ZHENG ; Xiuxing LIU ; Wenqing LE ; Lihui XIE ; He LI ; Wen WEN ; Si WANG ; Shuai MA ; Zhaohao HUANG ; Jinguo YE ; Wen SHI ; Yanxia YE ; Zunpeng LIU ; Moshi SONG ; Weiqi ZHANG ; Jing-Dong J HAN ; Juan Carlos Izpisua BELMONTE ; Chuanle XIAO ; Jing QU ; Hongyang WANG ; Guang-Hui LIU ; Wenru SU
Protein & Cell 2020;11(10):740-770
Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.
Adult
;
Aged
;
Aged, 80 and over
;
Aging
;
genetics
;
immunology
;
Betacoronavirus
;
CD4-Positive T-Lymphocytes
;
metabolism
;
Cell Lineage
;
Chromatin Assembly and Disassembly
;
Coronavirus Infections
;
immunology
;
Cytokine Release Syndrome
;
etiology
;
immunology
;
Cytokines
;
biosynthesis
;
genetics
;
Disease Susceptibility
;
Flow Cytometry
;
methods
;
Gene Expression Profiling
;
Gene Expression Regulation, Developmental
;
Gene Rearrangement
;
Humans
;
Immune System
;
cytology
;
growth & development
;
immunology
;
Immunocompetence
;
genetics
;
Inflammation
;
genetics
;
immunology
;
Mass Spectrometry
;
methods
;
Middle Aged
;
Pandemics
;
Pneumonia, Viral
;
immunology
;
Sequence Analysis, RNA
;
Single-Cell Analysis
;
Transcriptome
;
Young Adult