1.The using of tongue diagnosis in fatty liver patients' health management
Shenghua WANG ; Rong LIANG ; Zhaoping WANG ; Fangling LI ; Jiping REN ; Rumei KANG
Chinese Journal of Health Management 2008;2(1):39-41
Objective To find the syndrome tendency of fatty liver people and then providing basis for TCM integrated into fatty liver patients'Health Management by analyzing the characteristics of fatty liver people's tongue and combining them with the investigating results of symptoms.Methods Using 1∶1control study methods,examined 368 cases(184 cases were patients with fatty liver),observed their tongues as well as their symptoms,and recorded results.Results x2 test showed fat tongue,thin and small tongue,teeth-marked tongue,thick fur,greasy fur,fond of cool drink,hate feat,diarrhea after eating cold food,more sweat,lethargy,heavy four limbs,more flatus were significantly increase in fatty liver people(x27·580,11.740,23.700,8.666,10.793,P>0.05).Conclusions The symptoms of patients with fatty liver disease were the reflection of heat and(or)damp-heat.Found the generally pathology rules of patients with fatty liver disease,we could be more reasonable and effective prevention and treatment.
2.Collagen quantitation by detection of marker peptides with HPLC-MS.
Kun SUN ; Fan YANG ; Yingjun KONG ; Jiyao KANG ; Wei CAO ; Xiaoyan YANG ; Shenghua ZHA ; Guifeng ZHANG ; Minglin WANG
Chinese Journal of Biotechnology 2015;31(11):1660-1668
A method for quantitation of collagen was established by detecting marker peptide with high performance liquid chromatography-mass spectrometry (HPLC-MS). Theoretical marker peptides were selected by sequence comparison. Bovine collagen type I was digested with trypsin. Marker peptides typical for collagen type I were identified with HPLC-MS. The relationship between the abundance of marker peptides and collagen concentration was established. The results show that GEAGPSGPAGPTGAR and the other 5 peptides showed high resolution during chromatographic separation and high signal intensity during MS analysis. Peptide signal intensity and collagen concentration showed a good linear relationship in the range from 0.1 to 3 mg/mL. Bovine tendon and collagen sponge were used as actual samples and collagen contents were determined as 90.2% and 93.4% respectively. Quantitation of marker peptides of collagen was a feasible method to identify and quantify collagens in medical device research and development.
Animals
;
Cattle
;
Chromatography, High Pressure Liquid
;
Collagen Type I
;
analysis
;
Mass Spectrometry
;
Peptides
;
analysis
3.Mechanism of Dihuang Yinzi in Improving Energy Metabolism Disorder and Autophagy Injury of Astrocytes in Brain of AD Mice
Mengjie SUN ; Hongni YU ; Guanghui HAN ; Fengli WANG ; Shenghua KANG ; Dongyue LI ; Tao MA
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(8):19-26
ObjectiveTo explore the mechanism of Dihuang Yinzi (DHYZ)in improving astrocyte injury in the brain and regulating energy metabolism and autophagy disorder in Alzheimer's disease (AD) model mice. MethodForty male APP/PS1 transgenic mice aged four months were randomly divided into a model group and a model + DHYZ group (2.5 g·kg-1), with 20 mice in each group. Forty C57BL/6J mice with the same background and same age were randomly divided into a control group and a control + DHYZ group (2.5 g·kg-1), with 20 mice in each group. The mice in the control group and the model group were administered with an equal volume of sterilized normal saline by gavage, once a day for 150 days. Novel object recognition test and step-down test were performed to evaluate the learning and memory ability of mice. The expression of glial fibrillary acidic protein (GFAP) in astrocytes was detected by immunofluorescence and Western blot. High-performance liquid chromatography (HPLC) was used to detect adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in brain tissues of mice, and the data obtained were used to calculate energy charge (EC) levels. The phosphorylation levels of liver kinase B1 (LKB1), adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK), UNC-51-like kinase 1 (ULK1), and mammalian target of rapamycin (mTOR) and the expression levels of autophagy-related proteins Beclin-1, microtuble-associated protein 1 light chain 3 (LC3)-Ⅱ/LC3-Ⅰ, and p62 in mouse brain were measured by Western blot. ResultCompared with the control group, the model group showed decreased novel object recognition index, shortened retention latency, increased error times in the step-down test, up-regulated protein expression of GFAP, decreased content of ATP, ADP, and EC in brain tissues, elevated AMP , increased levels of p-AMPK, p-LKB1, and p-mTOR, and protein expression of p62 , and down-regulated p-ULK1 level and protein expression of Beclin-1 and LC3-Ⅱ/LC3-Ⅰ(P<0.01), while the above experimental indexes were not significantly different in the control + DHYZ group. Compared with the model group, the model + DHYZ group showed increased novel object recognition index(P<0.05), prolonged retention latency(P<0.01), decreased error times(P<0.01) in the step-down test, reduced protein expression of GFAP(P<0.05), increased content of ATP, ADP, and EC in brain tissues (P<0.05, P<0.01), decreased AMP content(P<0.05), reduced p-AMPK, p-LKB1, and p-mTOR levels and protein expression of p62, and up-regulated p-ULK1 level and protein expression of Beclin-1 and LC3-Ⅱ/LC3-Ⅰ(P<0.01). ConclusionBy protecting astrocytes, DHYZ can improve energy metabolism and autophagy disorder in AD mice to improve the learning and memory ability of model mice.
4.Mechanism of Dihuang Yinzi in Improving Astrocyte Injury and Regulating Synaptic Structure and Function in AD Mice
Hongni YU ; Mengjie SUN ; Guanghui HAN ; Fengli WANG ; Shenghua KANG ; Dongyue LI ; Tao MA
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(8):27-35
ObjectiveTo investigate the mechanism of Dihuang Yinzi in improving astrocyte injury and protecting synaptic structure and function in the brain of Alzheimer's disease (AD) mice. MethodForty male APP/PS1 transgenic mice aged four months were randomly divided into a model group and a model + Dihuang Yinzi (0.25 g·kg-1) group, with 20 mice in each group. Forty C57BL/6J mice with the same background and same age were randomly divided into a control group and a control + Dihuang Yinzi (0.25 g·kg-1) group, with 20 mice in each group. The mice in the control + Dihuang Yinzi group and the model + Dihuang Yinzi group were administered with Dihuang Yinzi by gavage, and those in the control group and the model group received an equal volume of sterilized normal saline, once a day for 150 days. The learning and memory ability of mice was tested by the light-dark box test and Y-maze spontaneous alternation test. The content of glutamate (Glu) and glutamine (Gln) was measured by liquid chromatography-tandem mass spectrometry (LC-MS). Long-term potentiation (LTP) assay was used to detect synaptic plasticity in brain tissues. The protein expression levels of excitatory amino acid transporter 2 (EAAT2), postsynaptic density protein95 (PSD95), and synaptophysin (SYN) in brain tissues were measured by Western blot. Immunofluorescence was used to assess the localization and expression of EAAT2. Colorimetry was performed to detect Na+-K+ ATPase activity in mouse brain tissues. ResultAs compared with the control group, the model group showed shortened residence latency (P<0.01), increased number of errors (P<0.01) in the light-dark box test, reduced spontaneous alternation behaviors (P<0.01), no significant difference in the total number of arm entries in the Y-maze spontaneous alternation test, down-regulated expression of EAAT2, PSD95, and SYN (P<0.01), blunted activity of Na+-K+ ATPase (P<0.01), up-regulated Glu level (P<0.01), down-regulated Gln level (P<0.01), and reduced relative population spike (PS) amplitude and the slope of excitatory postsynaptic potential (EPSP) (P<0.05, P<0.01), while the above experimental indexes were not significantly different in the control + Dihuang Yinzi group. Compared with the model group, the model + Dihuang Yinzi group displayed prolonged residence latency (P<0.05), decreased number of errors (P<0.01) in the light-dark box test, increased spontaneous alternation behaviors (P<0.01), no significant difference in the total number of arm entries in the Y-maze spontaneous alternation test, up-regulated expression of EAAT2, PSD95, and SYN (P<0.01), potentiated activity of Na+-K+ ATPase (P<0.01), reduced Glu level (P<0.01), up-regulated Gln level (P<0.01), and increased PS amplitude and EPSP slope (P<0.01). ConclusionDihuang Yinzi can improve cognitive dysfunction in AD mice by protecting astrocytes, increasing Glu uptake to reduce its abnormal accumulation, and protecting synaptic structure and function.
5.Effect of Astrocyte-neuron Coupling Imbalance in Development of Alzheimer's Disease and Intervention Mechanism of Kidney-tonifying and Marrow-filling TCM Prescriptions
Guanghui HAN ; Shenghua KANG ; Hongni YU ; Mengjie SUN ; Dongyue LI ; Rui MA ; Weizhe ZHEN ; Tao MA
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(8):1-9
Astrocytes are important nerve cells in the central nervous system (CNS), which mainly play a key role in nutrition and support. Astrocytes and neurons undergo close energy coupling and substance coupling, which are closely related and interact with each other. In recent years, many studies have shown that the astrocyte-neuron coupling imbalance plays a central role in the occurrence and progression of Alzheimer's disease (AD) and serves as an important therapeutic target receiving increasing attention. According to traditional Chinese medicine (TCM) theory, the main pathogenesis of AD is kidney deficiency and marrow inadequacy, and in clinical medication, kidney-tonifying and marrow-filling TCM prescriptions are often employed with satisfactory results achieved. As reported, many kidney-tonifying and marrow-filling prescriptions exhibit regulatory and protective effects on the imbalance of astrocyte-neuron coupling, suggesting that the effect of kidney-tonifying and marrow-filling prescriptions in treating AD may have some internal relationship with its regulation of the imbalance of astrocyte-neuron coupling. This article reviewed the underlying internal relationship between the imbalance of astrocyte-neuron coupling and the pathogenesis of kidney deficiency and marrow inadequacy in AD and the research progress in the intervention mechanism of TCM for tonifying the kidney and filling the marrow.
6.Mechanism of Dihuang Yinzi in Improving Astrocyte Injury and Glycolysis in AD Mice via PI3K/Akt Pathway
Hongni YU ; Mengjie SUN ; Fengli WANG ; Shenghua KANG ; Guanghui HAN ; Dongyue LI ; Weizhe ZHEN ; Tao MA
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(8):10-18
ObjectiveTo explore the mechanism of Dihuang Yinzi in improving astrocyte injury and glycolysis in Alzheimer's disease (AD) mice via regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, thereby improving the cognitive function of AD mice. MethodForty male APP/PS1 transgenic mice aged four months were randomly divided into a model group and a model + Dihuang Yinzi (0.25 g·kg-1) group, with 20 mice in each group. Forty C57BL/6J mice with the same background and same age were randomly divided into a control group and a control + Dihuang Yinzi (0.25 g·kg-1) group, with 20 mice in each group. The mice in the control + Dihuang Yinzi group and the model + Dihuang Yinzi group were administered with Dihuang Yinzi by gavage, and those in the control group and the model group received an equal volume of sterilized normal saline, once a day for 150 days. Morris water maze test was performed to test the ability of navigation and space exploration of mice. The protein expression of p-PI3K, PI3K, p-Akt, Akt, phosphofructokinase-1 (PFK-1), and aldehyde dehydrogenase 3 family member B2 (ALDH3B2) in mouse brain tissues was measured by Western blot. An immunofluorescence assay was performed to detect astrocyte morphology and the expression level of ALDH3B2. ResultAs compared with the control group, the model group showed prolonged escape latency during the 2nd to 5th days of the location-based navigation (P<0.05, P<0.01), reduced number of times crossing the target area of the platform, shortened residence time in the target quadrant (P<0.05, P<0.01), prolonged residence time in the opposite quadrant (P<0.05), increased surface area of the cell body and total length of cell protrusions of astrocytes (P<0.05, P<0.01), and down-regulated protein expression of p-PI3K, p-Akt, ALDH3B2, and PFK-1 (P<0.01), while the above experimental indexes were not significantly different in the control + Dihuang Yinzi group. Compared with the model group, the model + Dihuang Yinzi group showed shortened escape latency of APP/PS1 mice during the 2nd to 5th days of the location-based navigation (P<0.05, P<0.01), increased number of times crossing the platform, prolonged target quadrant residence time (P<0.05, P<0.01), shortened residence time in the opposite quadrant (P<0.05), reduced surface area of the cell body and total length of cell protrusions of astrocytes (P<0.05), and up-regulated protein expression of p-PI3K, p-Akt, ALDH3B2, and PFK-1 (P<0.01). ConclusionDihuang Yinzi can improve the learning and memory ability of AD mice by activating the PI3K/Akt signaling pathway and up-regulating the protein expression of PFK-1 and ALDH3B2 to protect against astrocyte injury in brain tissues and improve glycolysis.
7.Discovery of novel sulfonamide substituted indolylarylsulfones as potent HIV-1 inhibitors with better safety profiles.
Shenghua GAO ; Letian SONG ; Yusen CHENG ; Fabao ZHAO ; Dongwei KANG ; Shu SONG ; Mianling YANG ; Bing YE ; Wei ZHAO ; Yajie TANG ; Erik DE CLERCQ ; Christophe PANNECOUQUE ; Peng ZHAN ; Xinyong LIU
Acta Pharmaceutica Sinica B 2023;13(6):2747-2764
Indolylarylsulfones (IASs) are classical HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a unique scaffold and possess potent antiviral activity. To address the high cytotoxicity and improve safety profiles of IASs, we introduced various sulfonamide groups linked by alkyl diamine chain to explore the entrance channel of non-nucleoside inhibitors binding pocket. 48 compounds were designed and synthesized to evaluate their anti-HIV-1 activities and reverse transcriptase inhibition activities. Especially, compound R10L4 was endowed with significant inhibitory activity towards wild-type HIV-1 (EC50(WT) = 0.007 μmol/L, SI = 30,930) as well as a panel of single-mutant strains exemplified by L100I (EC50 = 0.017 μmol/L, SI = 13,055), E138K (EC50 = 0.017 μmol/L, SI = 13,123) and Y181C (EC50 = 0.045 μmol/L, SI = 4753) which were superior to Nevirapine and Etravirine. Notably, R10L4 was characterized with significantly reduced cytotoxicity (CC50 = 216.51 μmol/L) and showed no remarkable in vivo toxic effects (acute and subacute toxicity). Moreover, the computer-based docking study was also employed to characterize the binding mode between R10L4 and HIV-1 RT. Additionally, R10L4 presented an acceptable pharmacokinetic profile. Collectively, these results deliver precious insights for next optimization and indicate that the sulfonamide IAS derivatives are promising NNRTIs for further development.
8.Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors.
Shenghua GAO ; Tianguang HUANG ; Letian SONG ; Shujing XU ; Yusen CHENG ; Srinivasulu CHERUKUPALLI ; Dongwei KANG ; Tong ZHAO ; Lin SUN ; Jian ZHANG ; Peng ZHAN ; Xinyong LIU
Acta Pharmaceutica Sinica B 2022;12(2):581-599
Novel therapies are urgently needed to improve global treatment of SARS-CoV-2 infection. Herein, we briefly provide a concise report on the medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors with representative examples in different strategies from the medicinal chemistry perspective.
9.Not Available.
Letian SONG ; Shenghua GAO ; Bing YE ; Mianling YANG ; Yusen CHENG ; Dongwei KANG ; Fan YI ; Jin-Peng SUN ; Luis MENÉNDEZ-ARIAS ; Johan NEYTS ; Xinyong LIU ; Peng ZHAN
Acta Pharmaceutica Sinica B 2024;14(1):87-109
The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.
10.Eligibility of C-BIOPRED severe asthma cohort for type-2 biologic therapies.
Zhenan DENG ; Meiling JIN ; Changxing OU ; Wei JIANG ; Jianping ZHAO ; Xiaoxia LIU ; Shenghua SUN ; Huaping TANG ; Bei HE ; Shaoxi CAI ; Ping CHEN ; Penghui WU ; Yujing LIU ; Jian KANG ; Yunhui ZHANG ; Mao HUANG ; Jinfu XU ; Kewu HUANG ; Qiang LI ; Xiangyan ZHANG ; Xiuhua FU ; Changzheng WANG ; Huahao SHEN ; Lei ZHU ; Guochao SHI ; Zhongmin QIU ; Zhongguang WEN ; Xiaoyang WEI ; Wei GU ; Chunhua WEI ; Guangfa WANG ; Ping CHEN ; Lixin XIE ; Jiangtao LIN ; Yuling TANG ; Zhihai HAN ; Kian Fan CHUNG ; Qingling ZHANG ; Nanshan ZHONG
Chinese Medical Journal 2023;136(2):230-232