1.Safety and efficacy of human umbilical cord-derived mesenchymal stem cells in COVID-19 patients: A real-world observation.
Siyu WANG ; Tao YANG ; Tiantian LI ; Lei SHI ; Ruonan XU ; Chao ZHANG ; Zerui WANG ; Ziying ZHANG ; Ming SHI ; Zhe XU ; Fu-Sheng WANG
Chinese Medical Journal 2025;138(22):2984-2992
BACKGROUND:
The effects of human umbilical cord-derived mesenchymal stem cell (UC-MSC) treatment on coronavirus disease 2019 (COVID-19) patients have been preliminarily characterized. However, real-world data on the safety and efficacy of intravenous transfusions of MSCs in hospitalized COVID-19 patients at the convalescent stage remain to be reported.
METHODS:
This was a single-arm, multicenter, real-word study in which a contemporaneous external control was included as the control group. Besides, severe and critical COVID-19 patients were considered together as the severe group, given the small number of critical patients. For a total of 110 patients, 21 moderate patients and 31 severe patients were enrolled in the MSC treatment group, while 26 moderate patients and 32 severe patients were enrolled in the control group. All patients received standard treatment. The MSC treatment patients additionally received intravenous infusions of MSCs at a dose of 4 × 10 7 cells on days 0, 3, and 6, respectively. The clinical outcomes, including adverse events (AEs), lung lesion proportion on chest computed tomography, pulmonary function, 6-min walking distance (6-MWD), clinical symptoms, and laboratory parameters, were measured on days 28, 90, 180, 270, and 360 during the follow-up visits.
RESULTS:
In patients with moderate COVID-19, MSC treatment improved pulmonary function parameters, including forced expiratory volume in the first second (FEV1) and maximum forced vital capacity (VCmax) on days 28 (FEV1, 2.75 [2.35, 3.23] vs . 2.11 [1.96, 2.35], P = 0.008; VCmax, 2.92 [2.55, 3.60] vs . 2.47 [2.18, 2.68], P = 0.041), 90 (FEV1, 2.93 [2.63, 3.27] vs . 2.38 [2.24, 2.63], P = 0.017; VCmax, 3.52 [3.02, 3.80] vs . 2.59 [2.45, 3.15], P = 0.017), and 360 (FEV1, 2.91 [2.75, 3.18] vs . 2.30 [2.16, 2.70], P = 0.019; VCmax,3.61 [3.35, 3.97] vs . 2.69 [2.56, 3.23], P = 0.036) compared with the controls. In addition, in severe patients, MSC treatment notably reduced the proportion of ground-glass lesions in the whole lung volume on day 90 ( P = 0.045) compared with the controls. No difference in the incidence of AEs was observed between the two groups. Similarly, no significant differences were found in the 6-MWD, D-dimer levels, or interleukin-6 concentrations between the MSC and control groups.
CONCLUSIONS:
Our results demonstrate the safety and potential of MSC treatment for improved lung lesions and pulmonary function in convalescent COVID-19 patients. However, comprehensive and long-term studies are required to confirm the efficacy of MSC treatment.
TRIAL REGISTRATION
Chinese Clinical Trial Registry, ChiCTR2000031430.
Humans
;
COVID-19/therapy*
;
Female
;
Male
;
Mesenchymal Stem Cell Transplantation/adverse effects*
;
Middle Aged
;
Adult
;
Umbilical Cord/cytology*
;
Mesenchymal Stem Cells/cytology*
;
SARS-CoV-2
;
Aged
;
Treatment Outcome
2.Identification of GSK3 family and regulatory effects of brassinolide on growth and development of Nardostachys jatamansi.
Yu-Yan LEI ; Zheng MA ; Jing WEI ; Wen-Bing LI ; Ying LI ; Zheng-Ming YANG ; Shao-Shan ZHANG ; Jing-Qiu FENG ; Hua-Chun SHENG ; Yuan LIU
China Journal of Chinese Materia Medica 2025;50(2):395-403
This study identified 8 members including NjBIN2 of the GSK3 family in Nardostachys jatamansi by bioinformatics analysis. Moreover, the phylogenetic tree revealed that the GKS3 family members of N. jatamansi had a close relationship with those of Arabidopsis. RT-qPCR results showed that NjBIN2 presented a tissue-specific expression pattern with the highest expression in roots, suggesting that NjBIN2 played a role in root growth and development. In addition, the application of epibrassinolide or the brassinosteroid(BR) synthesis inhibitor(brassinazole) altered the expression pattern of NjBIN2 and influenced the photomorphogenesis(cotyledon opening) and root development of N. jatamansi, which provided direct evidence about the functions of NjBIN2. In conclusion, this study highlights the roles of BIN2 in regulating the growth and development of N. jatamansi by analyzing the expression pattern and biological function of NjBIN2. It not only enriches the understanding about the regulatory mechanism of the growth and development of N. jatamansi but also provides a theoretical basis and potential gene targets for molecular breeding of N. jatamansi with improved quality in the future.
Brassinosteroids/metabolism*
;
Steroids, Heterocyclic/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Plant Proteins/metabolism*
;
Phylogeny
;
Nardostachys/metabolism*
;
Plant Growth Regulators/pharmacology*
;
Plant Roots/drug effects*
3.Progress in investigating astrocyte heterogeneity after spinal cord injury based on single-cell sequencing technology.
Lei DU ; Yan-Jun ZHANG ; Tie-Feng GUO ; Lin-Zhao LUO ; Ping-Yi MA ; Jia-Ming LI ; Sheng TAN
China Journal of Orthopaedics and Traumatology 2025;38(5):544-548
In recent years, the study of single-cell transcriptome sequencing technology in the heterogeneity of astrocytes (astrocytes) after spinal cord injury (SCI) has provided new perspectives on post-traumatic nerve regeneration and repair. To provide a review on the research progress of single-cell sequencing technology in astrocytes after spinal cord injury (SCI), and to more comprehensively and deeply elaborate the application of single-cell sequencing technology in the field of astrocytes after SCI. Single-cell sequencing technology can analyse the transcriptomes of individual cells in a high-throughput manner, thus revealing fine differences in cell types and states. By using single-cell sequencing technology, the heterogeneity of astrocytes after SCI and their association with nerve regeneration and repair were revealed. In conclusion, the application of single-cell sequencing technology provides an important tool to reveal the heterogeneity of astrocytes after SCI, to further explore the mechanisms of astrocytes in SCI, and to develop intervention strategies targeting their regulatory mechanisms in order to improve the therapeutic efficacy of SCI. The discovery of changes in astrocyte transcriptome dynamics has improved researchers' understanding of spinal cord injury lesion progression and provided new insights into the treatment of spinal cord injury at different time points. To date, all of these findings need to be validated by more basic research and sufficient clinical trials. In the future, single-cell sequencing technology, through interdisciplinary collaboration with bioinformatics, computer science, tissue engineering, and clinical medicine, is expected to open a new window for the treatment of spinal cord injury.
Spinal Cord Injuries/metabolism*
;
Astrocytes/cytology*
;
Single-Cell Analysis/methods*
;
Humans
;
Animals
;
Transcriptome
;
Nerve Regeneration
4.Chronic prostatitis/chronic pelvic pain syndrome induces metabolomic changes in expressed prostatic secretions and plasma.
Fang-Xing ZHANG ; Xi CHEN ; De-Cao NIU ; Lang CHENG ; Cai-Sheng HUANG ; Ming LIAO ; Yu XUE ; Xiao-Lei SHI ; Zeng-Nan MO
Asian Journal of Andrology 2025;27(1):101-112
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a complex disease that is often accompanied by mental health disorders. However, the potential mechanisms underlying the heterogeneous clinical presentation of CP/CPPS remain uncertain. This study analyzed widely targeted metabolomic data of expressed prostatic secretions (EPS) and plasma to reveal the underlying pathological mechanisms of CP/CPPS. A total of 24 CP/CPPS patients from The Second Nanning People's Hospital (Nanning, China), and 35 asymptomatic control individuals from First Affiliated Hospital of Guangxi Medical University (Nanning, China) were enrolled. The indicators related to CP/CPPS and psychiatric symptoms were recorded. Differential analysis, coexpression network analysis, and correlation analysis were performed to identify metabolites that were specifically altered in patients and associated with various phenotypes of CP/CPPS. The crucial links between EPS and plasma were further investigated. The metabolomic data of EPS from CP/CPPS patients were significantly different from those from control individuals. Pathway analysis revealed dysregulation of amino acid metabolism, lipid metabolism, and the citrate cycle in EPS. The tryptophan metabolic pathway was found to be the most significantly altered pathway associated with distinct CP/CPPS phenotypes. Moreover, the dysregulation of tryptophan and tyrosine metabolism and elevation of oxidative stress-related metabolites in plasma were found to effectively elucidate the development of depression in CP/CPPS. Overall, metabolomic alterations in the EPS and plasma of patients were primarily associated with oxidative damage, energy metabolism abnormalities, neurological impairment, and immune dysregulation. These alterations may be associated with chronic pain, voiding symptoms, reduced fertility, and depression in CP/CPPS. This study provides a local-global perspective for understanding the pathological mechanisms of CP/CPPS and offers potential diagnostic and therapeutic targets.
Humans
;
Male
;
Prostatitis/blood*
;
Adult
;
Pelvic Pain/blood*
;
Metabolomics
;
Prostate/metabolism*
;
Middle Aged
;
Chronic Pain/blood*
;
Metabolome
;
Case-Control Studies
;
Tryptophan/blood*
;
Depression/blood*
;
Oxidative Stress/physiology*
;
Chronic Disease
;
Lipid Metabolism/physiology*
5.Associations between Red Cell Indices and Cerebral Blood Flow Velocity in High Altitude.
Hao Lun SUN ; Tai Ming ZHANG ; Dong Yu FAN ; Hao Xiang WANG ; Lu Ran XU ; Qing DU ; Jun LIANG ; Li ZHU ; Xu WANG ; Li LEI ; Xiao Shu LI ; Wang Sheng JIN
Biomedical and Environmental Sciences 2025;38(10):1314-1319
6.Calculation of retention and excretion fractions for uranium intake via wounds based on ICRP Report 137
Jieying LEI ; Yang ZHANG ; Bin ZHANG ; Ming XU ; Wei SHENG ; Gaofeng SUN
Chinese Journal of Radiological Health 2024;33(6):631-637
Objective To assess the retention and excretion fractions for uranium intake via wounds in the organs of adult reference computational phantom, and to improve the evaluation of health risks associated with radioactive isotopes intake via wounds. Methods A software for evaluation of the internal radiation dose was developed by combining the wound model in International Commission on Radiological Protection Report 156 and the systemic models in the International Commission on Radiological Protection Report 130 and the subsequent Occupational Intakes of Radionuclides series reports. This study was conducted to calculate the uranium retention fractions in adult reference individuals following ingestion through wounds of seven categories of uranium: weakly retained, moderately retained, strongly retained, very strongly retained, colloids, particles, and fragments. We assessed the retention fractions in the wound sites, bones, and liver, as well as the excretion fractions in urine and feces, and compared these results with authoritative results. Results The retention and excretion fractions of 238U and 235U in different forms of intake via wounds showed consistent variations. The retention fractions of weak and moderate uranium in wounds could be ignored after 1 000 d. The retention fractions of strong, avid, and colloid uranium were 10−4 to 10−5 after 10 000 d. A significant portion of the uranium present in the forms of particles and fragments exhibited long-term retention in wounds. The bone retention fractions were 1 to 2 orders of magnitude higher than the liver retention fractions. Following the intake of soluble and insoluble uranium, the retention fractions in these two organs decreased and increased, respectively, compared with those observed on the first day. The urinary excretion fractions were approximately 2 orders of magnitude higher than the fecal excretion fractions. Following the intake of soluble and particulate uranium, the excretion fractions decreased. At 1 000 d after the intake of uranium in the form of fragments, the urinary and fecal excretion fractions were 10−6 and 10−8, respectively. Conclusion The calculation results validated the accuracy of the established models, providing data support for the assessment of internal exposure doses in individuals following uranium wound contamination incidents.
8.Influence of Menthol Infusion on Esophageal Peristalsis in Patients With Ineffective Esophageal Motility
Jui-Sheng HUNG ; Wei-Yi LEI ; Chih-Hsun YI ; Tso-Tsai LIU ; Ming-Wun WONG ; Shu-Wei LIANG ; Chien-Lin CHEN
Journal of Neurogastroenterology and Motility 2024;30(4):447-452
Background/Aims:
Activation of the cold receptor, transient receptor potential melastatin 8 (TRPM8) by menthol inhibits esophageal secondary peristalsis in healthy adults. Ineffective esophageal motility (IEM) is common. This study is to evaluate the effects of acute infusion of menthol on esophageal peristalsis in patients with IEM.
Methods:
Twenty patients with IEM (males 11, mean age 36) were studied for esophageal peristalsis using high-resolution manometry. All participant had primary peristalsis performed with 10 water swallows and secondary peristalsis generated with 10 rapid air injections of 20 mL via mid-esophageal infusion port. Two different sessions by randomly performing acute administration of placebo or menthol (3 mM) were used for testing their effects on esophageal peristalsis.
Results:
Menthol infusion had no effects on distal contractile integral (P = 0.471), distal latency (P = 0.58), or complete peristalsis (P = 0.251). Menthol infusion did not change basal lower esophageal sphincter pressure (P = 0.321), esophagogastric junction contractile integral (P = 0.758), or integrated relaxation pressure (P = 0.375) of primary peristalsis, but reduced upper esophageal sphincter pressure (P = 0.037). Infusion of menthol significantly reduced the frequency of secondary peristalsis for air injects of 20 mL (P = 0.002), but did not affect distal contractile integral of secondary peristalsis for air injections of 20 mL.
Conclusion
This work has suggested that activation of TRPM8 by menthol can attenuate mechanosensitivity of secondary peristalsis in response to rapid air distension regardless of the presence of IEM.
9.Influence of Menthol Infusion on Esophageal Peristalsis in Patients With Ineffective Esophageal Motility
Jui-Sheng HUNG ; Wei-Yi LEI ; Chih-Hsun YI ; Tso-Tsai LIU ; Ming-Wun WONG ; Shu-Wei LIANG ; Chien-Lin CHEN
Journal of Neurogastroenterology and Motility 2024;30(4):447-452
Background/Aims:
Activation of the cold receptor, transient receptor potential melastatin 8 (TRPM8) by menthol inhibits esophageal secondary peristalsis in healthy adults. Ineffective esophageal motility (IEM) is common. This study is to evaluate the effects of acute infusion of menthol on esophageal peristalsis in patients with IEM.
Methods:
Twenty patients with IEM (males 11, mean age 36) were studied for esophageal peristalsis using high-resolution manometry. All participant had primary peristalsis performed with 10 water swallows and secondary peristalsis generated with 10 rapid air injections of 20 mL via mid-esophageal infusion port. Two different sessions by randomly performing acute administration of placebo or menthol (3 mM) were used for testing their effects on esophageal peristalsis.
Results:
Menthol infusion had no effects on distal contractile integral (P = 0.471), distal latency (P = 0.58), or complete peristalsis (P = 0.251). Menthol infusion did not change basal lower esophageal sphincter pressure (P = 0.321), esophagogastric junction contractile integral (P = 0.758), or integrated relaxation pressure (P = 0.375) of primary peristalsis, but reduced upper esophageal sphincter pressure (P = 0.037). Infusion of menthol significantly reduced the frequency of secondary peristalsis for air injects of 20 mL (P = 0.002), but did not affect distal contractile integral of secondary peristalsis for air injections of 20 mL.
Conclusion
This work has suggested that activation of TRPM8 by menthol can attenuate mechanosensitivity of secondary peristalsis in response to rapid air distension regardless of the presence of IEM.
10.Influence of Menthol Infusion on Esophageal Peristalsis in Patients With Ineffective Esophageal Motility
Jui-Sheng HUNG ; Wei-Yi LEI ; Chih-Hsun YI ; Tso-Tsai LIU ; Ming-Wun WONG ; Shu-Wei LIANG ; Chien-Lin CHEN
Journal of Neurogastroenterology and Motility 2024;30(4):447-452
Background/Aims:
Activation of the cold receptor, transient receptor potential melastatin 8 (TRPM8) by menthol inhibits esophageal secondary peristalsis in healthy adults. Ineffective esophageal motility (IEM) is common. This study is to evaluate the effects of acute infusion of menthol on esophageal peristalsis in patients with IEM.
Methods:
Twenty patients with IEM (males 11, mean age 36) were studied for esophageal peristalsis using high-resolution manometry. All participant had primary peristalsis performed with 10 water swallows and secondary peristalsis generated with 10 rapid air injections of 20 mL via mid-esophageal infusion port. Two different sessions by randomly performing acute administration of placebo or menthol (3 mM) were used for testing their effects on esophageal peristalsis.
Results:
Menthol infusion had no effects on distal contractile integral (P = 0.471), distal latency (P = 0.58), or complete peristalsis (P = 0.251). Menthol infusion did not change basal lower esophageal sphincter pressure (P = 0.321), esophagogastric junction contractile integral (P = 0.758), or integrated relaxation pressure (P = 0.375) of primary peristalsis, but reduced upper esophageal sphincter pressure (P = 0.037). Infusion of menthol significantly reduced the frequency of secondary peristalsis for air injects of 20 mL (P = 0.002), but did not affect distal contractile integral of secondary peristalsis for air injections of 20 mL.
Conclusion
This work has suggested that activation of TRPM8 by menthol can attenuate mechanosensitivity of secondary peristalsis in response to rapid air distension regardless of the presence of IEM.

Result Analysis
Print
Save
E-mail