1.GC-MS Analysis of Essential Oil from Fruits of Cinnamomum camphora chvar. Borneol
Shaolin OUYANG ; Xiaoning ZHAO ; Chuwen LI ; Xiufen WANG ; Ziren SU ; Huifang ZENG
Chinese Journal of Information on Traditional Chinese Medicine 2013;(11):58-60
Objective To analyze and identify the chemical constituents of essential oil from the fruits of Cinnamomum camphora chvar. Borneol. Methods The essential oil from the fruits was extracted by steam distillation and its chemical constituents were analyzed and identified by GC-MS. Results Fifty compounds were separated, and 42 kinds of which accounting for 99.536% were identified. D-borneol was the most abundant compound, of which the amount was 50.684%of the total constituents. Conciusion This present study demonstrated higher content of natural D-borneol, providing scientific basis for further exploration and utilization of the fruits of Cinnamomum camphora chvar. Borneol.
2.Optimal preparation procedure and quality evaluation of the superparamagnetic iron oxide coated by dextran
Yi LI ; Hongwu SUN ; Xilin WEN ; Yu OUYANG ; Ming WEN ; Shaolin LI
Chinese Journal of Nuclear Medicine and Molecular Imaging 2015;35(2):139-144
Objective To determine the optimal procedure for preparation of the SPIO nanoparticles modified by dextran polylysine,and to evaluate the quality of this product.Methods The optimal preparation procedure of four factors (solution pH value,dextran concentration,reaction temperature and stirring rate) affecting SPIO hydrodynamic size were obtained through orthogonal experiments (3 levels).SPIO nanoparticles were synthesized under an optimum procedure.The shape and hydrodynamic size were detected by transmission electron microscope (TEM) and Malvern Zetasizer respectively.The content of Fe was detected by atomic absorption spectrophotometer,while chemical structures of SPIO nanoparticles were characterized and analyzed by infrared spectroscopy (IR) method.X-ray powder diffraction method was used to identify the ingredients,and the magnetic parameters were measured by vibrating sample magnetometer.Furthermore,experiments with ovarian cancer cells were performed to primarily validate the magnetic property of SPIO nanoparticles.Results The results of the orthogonal experiments showed that the optimum preparation procedure was as follows:dextran concentration of 10 mg/ml,pH 10,reaction temperature of 80 ℃ and stirring rate of 600 r/min.The TEM results showed the SPIO nanoparticles were in spherical shape,homogeneously distributed and uniform in size,and the mean diameter was 7.0 nm.The content of Fe was (12.36±0.08) g/L.The IR results clearly showed that the Fe3O4 was coated by dextran successfully.The Xray powder diffraction method showed that the sample contained Fe3O4 and the magnetism parameters indicated that the sample had superparamagnetism.The experiments with ovarian cancer cells demonstrated that SPIO nanoparticles could enter into the cells and then the cells had certain magnetic properties.Conclusions The SPIO nanoparticles synthesized under the optimal procedure are stable,small in size,with good dispersion and are feasible to enter into cells for rendering certain magnetic properties.This study has provided a good foundation and potential for further research.
3.Callus induction of Cinnamonum camphora and formation of borneol.
Meilan CHEN ; Zhengliang YE ; Shaolin OUYANG ; Shufang LIN ; Aijuan SHAO ; Luqi HUANG
China Journal of Chinese Materia Medica 2010;35(5):558-560
OBJECTIVETo optimize the condition of callus of Cinnamonum camphora induced.
METHODGC and plant tissue culture method were applied in the study.
RESULTThe effect of callus induced and the growth of callus were different in MS medium with different proportion of hormone. The ration of callus induced was the highest and the growth of callus was the most prosperous in the MS medium with 4 mg x L(-1) 2,4-D and 0.2 mg x L(-1) 6-BA. It is found that callus induced by young leaf contained borneol, but callus induced by young stem not.
CONCLUSIONThe optimization of callus of C. camphora induced is using the MS medium with 4 mg x L(-1) 2,4-D + 0.2 mg x L(-1) 6-BA. Callus induced by young leaf can generate borneol.
Bornanes ; metabolism ; Cinnamomum camphora ; growth & development ; metabolism ; Culture Media ; Tissue Culture Techniques
4.Connection of magnetic antisense probe with SK-Br-3 oncocyte mRNA nucleotide detected by high resolution atomic force microscope.
Shude TAN ; Yu OUYANG ; Xinyou LI ; Ming WEN ; Shaolin LI
Journal of Biomedical Engineering 2011;28(3):442-445
The present paper is aimed to detect superparamagnetic iron oxide labeled c-erbB2 oncogene antisense oligonucleotide probe (magnetic antisense probe) connected with SK-Br-3 oncocyte mRNA nucleotide by high resolution atomic force microscope (AFM). We transfected SK-Br-3 oncocyte with magnetic antisense probe, then observed the cells by AFM with high resolution and detected protein expression and magnetic resonance imagine (MRI). The high resolution AFM clearly showed the connection of the oligonucleotide remote end of magnetic antisense probe with the mRNA nucleotide of oncocyte. The expression of e-erbB2 protein in SK-Br3 cells were highly inhibited by using magnetic antisense probe. We then obtained the lowest signal to noise ratio (SNR) of SK-Br-3 oncocyte transfected with magnetic antisense probe by MRI (P<0.05). These experiments demonstrated that the high resolution AFM could be used to show the binding of magnetic antisense probe and SK-Br-3 mRNA of tumor cell nuclear.
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
DNA, Antisense
;
chemistry
;
genetics
;
Female
;
Ferric Compounds
;
chemistry
;
Genes, erbB-2
;
genetics
;
Humans
;
Magnetics
;
Microscopy, Atomic Force
;
methods
;
Molecular Probe Techniques
;
Nucleic Acid Probes
;
chemistry
;
genetics
;
Oligodeoxyribonucleotides
;
chemistry
;
genetics
;
Oxyphil Cells
;
ultrastructure
;
RNA, Messenger
;
genetics
;
metabolism
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.