1. SACSR: A low power BIST method for sequential circuits
Academic Journal of Xi'an Jiaotong University 2008;20(3):155-159
A novel built-in-self-test,(BIST) method called seeded autonomous cyclic shift register (SACSR) is presented to reduce test power of the sequential circuit. The key idea is to use a pseudorandom pattern generator and several XOR gates to generate seeds that share fewer test vectors. The generated seed is taken XOR operation with a cyclic shift register, and the single input change (SIC) sequence is generated. The proposed scheme is easily implemented and can reduce the switching activities of the circuit under-test. (CUT) greatly. Experimental results on-ISCAS89 benchmarks show that on average more than 63% power reduction can be achieved. It also demonstrates that the generated test vectors attain high fault coverage for stuck-at fault and transition fault coverage with short test length.
2. SACSR: A low power BIST method for sequential circuits
Academic Journal of Xi'an Jiaotong University ;20(3):155-159
A novel built-in-self-test,(BIST) method called seeded autonomous cyclic shift register (SACSR) is presented to reduce test power of the sequential circuit. The key idea is to use a pseudorandom pattern generator and several XOR gates to generate seeds that share fewer test vectors. The generated seed is taken XOR operation with a cyclic shift register, and the single input change (SIC) sequence is generated. The proposed scheme is easily implemented and can reduce the switching activities of the circuit under-test. (CUT) greatly. Experimental results on-ISCAS89 benchmarks show that on average more than 63% power reduction can be achieved. It also demonstrates that the generated test vectors attain high fault coverage for stuck-at fault and transition fault coverage with short test length.
3.SACSR:a low power BIST method for sequential circuits
Shaochong LEI ; Jun GUO ; Lei CAO ; Zeye LIU ; Xuanming WANG
Journal of Pharmaceutical Analysis 2008;20(3):155-159
A novel built-in-self-test (BIST) method called seeded autonomous cyclic shift register (SACSR) is presented to reduce test power of the sequential circuit. The key idea is to use a pseudorandom pattern generator and several XOR gates to generate seeds that share fewer test vectors. The generated seed is taken XOR operation with a cyclic shift register, and the single input change (SIC) sequence is generated. The proposed scheme is easily implemented and can reduce the switching activities of the circuit under test (CUT) greatly. Experimental results on ISCAS89 benchmarks show that on average more than 63% power reduction can be achieved. It also demonstrates that the generated test vectors attain high fault coverage for stuck-at fault and transition fault coverage with short test length.
4.Comparison of the thickness of macular ganglion cell inner plexiform layer in patients with a history of laser photocoagulation versus intravitreal injection of ranibizumab for retinopathy of prematurity
Ya TIAN ; Xinyu ZHAO ; Miaohong CHEN ; Zixin FAN ; Xianlu ZENG ; Lei ZHENG ; Honghui HE ; Jian ZENG ; Shaochong ZHANG ; Guoming ZHANG
Chinese Journal of Ocular Fundus Diseases 2022;38(7):551-555
Objective:To compare the thickness of the macular ganglion cell inner plexiform layer (mGCIPL) in patients with a history of laser photocoagulation (LP) versus intravitreal injection of ranibizumab (IVR) for retinopathy of prematurity (ROP).Methods:A retrospective clinical study. From June 2020 to January 2021, 70 eyes of 35 children with a history of surgery for ROP in Shenzhen Eye Hospital were included in the study. Among them, 18 males had 36 eyes, and 17 females had 34 eyes. The average age was 5.54±1.04 years. There were 18 patients (36 eyes) in LP group and 17 patients (34 eyes) in IVR group. There was no significant difference in age ( t=-1.956), sexual composition ratio ( χ2=0.030), birth gestational age ( t=-1.316) and birth weight ( t=-1.060) between the two groups ( P=0.059, 0.862, 0.197, 0.297). All the eyes underwent the examination of optical coherence tomography (OCT). An elliptical region of 14.13 mm 2 centered on macular fovea was scanned according to the macular cube 512×128 model of the Cirrus HD-OCT 5000. The software was used to automatically divide macular fovea into six sectors (superior, inferior, temporal-superior, temporal-inferior, nasal-superior and nasal-inferior) and the average and minimum thickness of mGCIPL. t test was used to compared mGCIPL thickness between two groups using independent samples. Pearson correlation analysis was used to evaluate the correlation between mGCIPL thickness and age, birth gestational age, birth weight. Results:Patients in IVR group had significantly decreased mGCIPL thickness than that in LP group in the six sectors (superior, inferior, temporal-superior, temporal-inferior, nasal-superior and nasal-inferior) and the average and minimum ( t=6.484, 6.719, 7.682, 7.697, 5.151, 5.008, 7.148, 6.581; P<0.05). The thickness of mGCIPL was not significantly correlated with age, birth gestational age, birth weight ( P>0.05). Conclusion:The thickness of mGCIPL in patients with IVR treatment history is thinner than that in LP treatment.
5.Metabolomics study of kidney tissue in a mouse model of oxygen-induced retinopathy
Lijun DONG ; Hui QI ; Yuhang YANG ; Xingxing MAO ; Guoming ZHANG ; Shaochong ZHANG ; Hetian LEI
Chinese Journal of Experimental Ophthalmology 2024;42(1):19-28
Objective:To explore the effects of hyperoxic environments on renal metabolites to understand the potential mechanisms that contribute to pathologic retinal vascular neovascularization and renal injury through metabolomic studies in a mouse model of oxygen-induced retinopathy (OIR) model.Methods:Sixteen C57/B6J mice pups born to day 7 (P7) were randomly and equally divided into an OIR model group and a normal control group using a randomized numerical table of mother mice.Mice were reared standardly from birth until day 7 (P7), then mice and their mother mice in the OIR group were placed in a hyperoxic (75±2)% chamber until day 12 (P12) and then reared normally.Mice in the normal control group were reared normally throughout.Mice in two groups were killed by carbon dioxide euthanasia on postnatal day 17 (P17). The mice retinal wholemount from the two groups were made and stained with isolectin B4 (IB4) to observe the morphology of retinal vessels, central non-perfusion area and pathological neovascularization.The kidney tissue of P17 mice was analyzed by liquid chromatograph mass spectrometer.After anticoagulant treatment, the whole blood of mice was centrifuged and precipitated, and the obtained plasma without cellular components was analyzed by targeted metabonomics.Mass spectral information was interpreted using metabolomics data processing software Progenesis QI v2.3.Overall differences in metabolic profiles were distinguished by unsupervised principal component analysis and orthogonal partial least squares analysis (OPLS-DA). The fold change and P values of metabolites were compared between the two groups.The variable importance of projection value>1 and P value<0.05 was used to screen out differential metabolites.Metabolic pathway enrichment analysis of differential metabolites was performed based on the KEGG database.The feeding and use of animals were strictly in accordance with the requirements of the Ethics Committee of Jinan University, and the research protocol was reviewed and approved by the Ethics Committee of Jinan University (No.20200401-54). Results:The IB4 staining of retinal wholemounts showed that the retinal blood vessels were evenly distributed in the P17 mice from control group.The peripheral retinal vessels were tortuous and disordered with a large non-perfusion area in central region in P17 mice from OIR group, and a large number of neovascularization clusters were formed at the junction of the nonperfusion area and the vascular area of the retina, showing strong fluorescent staining.The relative area of retinal nonperfusion area in OIR group was (25.16±3.50)%, which was significantly larger than (0.63±0.30)% in normal control group ( t=12.07, P<0.001). The OPLS-DA parameter R2X cum (0.578), interpretation rate R2Y cum (0.978) and prediction rate Q2 cum (0.857) values were all greater than 0.5, indicating that the OPLS-DA model had a good predictive ability.A total of 26 main differential metabolites were found, among which 17 were up-regulated and 9 were down-regulated, including glycerophospholipids (PC 20∶4(5Z, 8Z, 11Z, 14Z)/0∶0, PC 22∶6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)/0∶0, PC 14∶1(9Z)/20∶2(11Z, 14Z), PE P-18∶0/20∶4(6E, 8Z, 11Z, 14Z)(5OH[S]), amino acid metabolites (arginine, ornithine, pipecolic acid, and hydroxylysine), purines (guanine, hypoxanthine, hydroxypurinol), and fatty acids (methyl 15-palmitate, 2, 6, 8, 12-tetramethyl-2, 4-tridecadien-1-ol), and so on.Differential metabolites were mainly enriched in ABC transporters (L-arginine, taurine, inositol, adenosine, N-acetyl-D-glucosamine, L-glutamine), aminoacyl-tRNA biosynthesis (L-isoleucine, L-proline, L-arginine, L-histidine, L-glutamine), arginine biosynthesis (L-arginine, L-ornithine, L-glutamine) metabolic pathways.The plasma targeted metabonomics showed that the differential amino acid metabolites were mainly enriched in metabolic pathways such as aminoacyl-tRNA biosynthesis, arginine biosynthesis and metabolism, and ABC transporters. Conclusions:ABC transporter, aminoacyl-tRNA biosynthesis, and arginine biosynthesis metabolic pathways in OIR mice may participate in the pathological changes of renal injury and neovascularization in retinopathy of prematurity.