1.Mechanism of Xiangsha Liujunzi Decoction in improving autophagy in interstitial cells of Cajal of rats with functional dyspepsia by regulation of IRE1/ASK1/JNK pathway.
Ming-Kai LYU ; Yong-Qiang DUAN ; Jin JIN ; Wen-Chao SHAO ; Qi WU ; Yong TIAN ; Min BAI ; Ying-Xia CHENG
China Journal of Chinese Materia Medica 2025;50(8):2237-2244
This study explored the mechanism of Xiangsha Liujunzi Decoction(XSLJZD) in the treatment of functional dyspepsia(FD) based on inositol-requiring enzyme 1(IRE1)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway-mediated autophagy in interstitial cells of Cajal(ICC). Forty-eight SPF-grade male SD suckling rats were randomly divided into a blank group and a modeling group, and the integrated modeling method(iodoacetamide gavage + disturbance of hunger and satiety + swimming exhaustion) was used to replicate the FD rat model. After the model replications were successfully completed, the rats were divided into a model group, high-dose, medium-dose, and low-dose groups of XSLJZD(12, 6, and 3 g·kg~(-1)·d~(-1)), and a positive drug group(mosapride of 1.35 mg·kg~(-1)·d~(-1)), and the intervention lasted for 14 days. The gastric emptying rate and intestinal propulsion rate of rats in each group were measured. The histopathological changes in the gastric sinus tissue of rats in each group were observed by hematoxylin-eosin(HE) staining. The ultrastructure of ICC was observed by transmission electron microscopy. The immunofluorescence double staining technique was used to detect the protein expression of phospho-IRE1(p-IRE1), TNF receptor associated factors 2(TRAF2), phospho-ASK1(p-ASK1), phospho-JNK(p-JNK), p62, and Beclin1 in ICC of gastric sinus tissue of rats in each group. Western blot was used to detect the related protein expression of gastric sinus tissue of rats in each group. Compared with those in the blank group, the rats in the model group showed decreased body weight, gastric emptying rate, and intestinal propulsion rate, and transmission electron microscopy revealed damage to the endoplasmic reticulum structure and increased autophagosomes in ICC. Immunofluorescence staining revealed that the ICC of gastric sinus tissue showed a significant elevation of p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins and a significant reduction of p62 protein. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. Compared with the model group, the body weight of rats in the high-dose and medium-dose groups of XSLJZD was increased, and the gastric emptying rate and intestinal propulsion rate were increased. Transmission electron microscopy observed amelioration of structural damage to the endoplasmic reticulum of ICC and reduction of autophagosomes, and the p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins in the ICC of gastric sinus tissue were significantly decreased. The p62 protein was significantly increased. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. XSLJZD can effectively treat FD, and its specific mechanism may be related to the inhibition of the expression of molecules related to the endoplasmic reticulum stress IRE1/ASK1/JNK pathway in ICC and the improvement of autophagy to promote gastric motility in ICC.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Autophagy/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Interstitial Cells of Cajal/metabolism*
;
Dyspepsia/physiopathology*
;
Protein Serine-Threonine Kinases/genetics*
;
MAP Kinase Kinase Kinase 5/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Humans
;
Endoribonucleases/genetics*
;
Multienzyme Complexes
2.Seminal plasma miR-26a-5p influences sperm DNA integrity by targeting and regulating the PTEN gene.
Chun-Hui LIU ; Wen-Sheng SHAN ; Zhi-Qiang WANG ; Shao-Jun LI ; Chen ZHU ; Hai WANG ; Yu-Na ZHOU ; Rui-Peng WU
National Journal of Andrology 2025;31(9):780-790
OBJECTIVE:
By analyzing the differential miRNA in seminal plasma between individuals with normal and abnormal sperm DNA fragmentation index(DFI), we aim to identify miRNA that may impact sperm DNA integrity and target genes, and attempt to analyze their potential mechanisms of action.
METHODS:
A total of 161 study subjects were collected and divided into normal control group, DFI-medium group and DFI-abnormal group based on the DFI detection values. Differential miRNA were identified through miRNA chip analysis. Through bioinformatics analysis and target gene prediction, miRNA related to DFI and specific target genes were identified. The relative expression levels of differential miRNA and target genes in each group were compared to explore the impact of their differential expression on DFI.
RESULTS:
Through miRNA chip analysis, a total of 11 differential miRNA were detected. Bioinformatics analysis suggested that miR-26a-5p may be associated with reduced sperm DNA integrity. And gene prediction indicated that PTEN was a specific target gene of miR-26a-5p. Compared to the normal control group, the relative expression levels of miR-26a-5p in both the DFI-medium group and the DFI-abnormal group showed a decrease, while the relative expression levels of PTEN showed an increase. The relative expression levels of miR-26a-5p in all groups were negatively correlated with DFI values, while the relative expression levels of PTEN showed a positive correlation with DFI values in the DFI-medium group and the DFI-abnormal group. The AUC of miR-26a-5p in the DFI-medium group was 0.740 (P<0.05), with a sensitivity of 73.6% and a specificity of 71.5%; the AUC of PTEN was 0.797 (P<0.05), with a sensitivity of 76.5% and a specificity of 78.4%. In the DFI-abnormal group, the AUC of miR-26a-5p was 0.848 (P<0.05), with a sensitivity of 81.3% and a specificity of 78.1%. While the AUC of PTEN was 0.763 (P<0.05), with a sensitivity of 77.2% and a specificity of 80.2%.
CONCLUSION
miR-26a-5p affects the integrity of sperm DNA by regulating the expression of PTEN negatively. The relative expression levels of seminal plasma miR-26a-5p and PTEN have good diagnostic value for sperm DNA integrity damage, which can help in the etiological diagnosis and prognosis analysis of abnormal DFI. This provides a diagnostic and treatment approach for the study and diagnosis of DFI abnormalities without clear etiology.
Male
;
Humans
;
MicroRNAs/genetics*
;
PTEN Phosphohydrolase/genetics*
;
Spermatozoa
;
Semen/metabolism*
;
DNA Fragmentation
3.The effect of reversing drug resistance and exact mechanism of novel platinum(IV) hybrids based on GSTs inhibitors
Fei-hong CHEN ; Jia-ni WU ; Xin WEN ; Shao-hua GOU
Acta Pharmaceutica Sinica 2024;59(12):3261-3272
Based on the octahedral modifiable structures and kinetic inertness, platinum (IV) complexes have become antitumor prodrug candidates to mitigate platinum (II) drug resistance and side effects. The nitrobenzoxadiazole derivative (NBDHEX) can inhibit the activity of glutathione
4.Evaluation of the efficacy and safety of intravenous infusion of ferric derisomaltose in the treatment of iron deficiency anemia: a single-center retrospective analysis
Shaoxue DING ; Yihui ZHAO ; Ting WANG ; Jing GUAN ; Limin XING ; Hong LIU ; Guojin WANG ; Xiaoming WANG ; Yuhong WU ; Wen QU ; Jia SONG ; Huaquan WANG ; Lijuan LI ; Zonghong SHAO ; Rong FU
Chinese Journal of Hematology 2024;45(2):178-183
Objective:To investigate the clinical efficacy and safety of ferric derisomaltose injection versus iron sucrose injection in the treatment of iron deficiency anemia (IDA) .Methods:A total of 120 patients with iron deficiency anemia admitted from June 2021 to March 2023 were given intravenous iron supplementation with ferric derisomaltose to assess the efficacy and safety of hemoglobin (HGB) elevation before and after treatment. Simultaneously, the clinical effects of iron supplementation with iron sucrose were compared to those of inpatient patients during the same period.Results:Baseline values were comparable in both groups. Within 12 weeks of treatment, the elevated HGB level in the ferric derisomaltose group was higher than that of the iron sucrose group, with a statistical difference at all time points, and the proportion of HGB increased over 20 g/L in the patients treated for 4 weeks was higher (98.7%, 75.9% ). During the treatment with ferric derisomaltose and iron sucrose, the proportion of mild adverse reactions in the ferric derisomaltose group was slightly lower than that of the iron sucrose group, and neither group experienced any serious adverse reactions. The patients responded well to the infusion treatment, with no reports of pain or pigmentation at the injection site.Conclusion:The treatment of IDA patients with ferric derisomaltose has a satisfactory curative effect, with the advantages of rapidity, accuracy, and safety. Therefore, it is worthy of widespread clinical use.
5.Efficacy and safety of eltrombopag in the treatment of primary immune thrombocytopenia: real-world data from a single medical center
Xifeng DONG ; Yalan LI ; Nianbin LI ; Weinan LIN ; Ting WANG ; Huaquan WANG ; Lijuan LI ; Wen QU ; Limin XING ; Hong LIU ; Yuhong WU ; Guojin WANG ; Jia SONG ; Jing GUAN ; Xiaoming WANG ; Zonghong SHAO ; Rong FU
Chinese Journal of Hematology 2024;45(3):271-276
Objective:This study aimed at investigating the efficacy and safety of eltrombopag in the treatment of adult primary immune thrombocytopenia (ITP) and evaluated the factors influencing its efficacy and side effects.Methods:A total of 198 patients with adult ITP who were admitted to Tianjin Medical University General Hospital between January 2018 and March 2022 were retrospectively analyzed. The efficacy of each starting dose of eltrombopag was evaluated, and adverse events were analyzed. The factors influencing efficacy were investigated, including sex, age, adult ITP type, platelet antibodies, and combined drug treatments.Results:Of the 198 patients, 70 males and 128 females with a median age of 45 years (18-88 years) were included; 130 (65.7%) had newly diagnosed adult ITP, 25 (12.6%) had persistent adult ITP, and 43 (21.7%) had chronic adult ITP. The bleeding event scores at baseline were assessed; 84.3% had scores of<4 and 15.7% had scores of ≥4. The eltrombopag response rate (initial response) at 6 weeks was 78.8% (complete response [CR]: 49.0%; CR1: 14.6%; CR2: 15.2%). The median response time to eltrombopag was 7 (7, 14) days. The initial response rates to 25, 50, and 75 mg eltrombopag were 74.1%, 85.9%, and 60.0%, respectively ( P=0.031). The initial response rate to the 50 mg dose was significantly higher than that of the 25-mg and 75-mg doses. Two patients received 100 mg as the starting dose, and their initial response was 0. Regarding dose adjustment, 70.7% of the patients remained on the starting dose, 8.6% underwent dose adjustment to 50 mg, and 6.1% underwent dose adjustment to 75 mg. Another two patients underwent dose adjustment to 100 mg. After dose adjustment, the persistent response rates were 83.6%, 85.3%, and 85.7% for the 25-, 50-, and 75-mg doses, respectively, with no significant difference. After dose adjustment, the sustained efficacy rate for the 100-mg dose (4 patients) was 100.0%. After 6 weeks of treatment with eltrombopag, the overall bleeding score of patients with ITP decreased. The number of patients with a score of ≥4 decreased to 0, the number of patients with a score of<4 decreased, and there was no significant change in the number of patients with a score of 1-2. The most common adverse event associated with eltrombopag was impaired liver function (7.7%). No thrombosis events or other adverse events were observed. ITP type and number of megakaryocytes significantly affected the initial response to eltrombopag. The initial response rates to eltrombopag for newly diagnosed adult ITP, persistent adult ITP, and chronic adult ITP were 85.3%, 56.0%, and 76.2%, respectively ( P=0.003). For megakaryocytes, the initial response rates were 61.8%, 87.1%, and 84.3% ( P=0.009) for the decreased, normal, and increased megakaryocyte groups, respectively. Conclusion:Eltrombopag, as a second-line or higher treatment for adult ITP, has a rapid onset of action and good safety. The initial response rate is significantly higher with a dose of 50 mg than with a dose of 25 mg. Patients with newly diagnosed ITP and those with normal or increased megakaryocyte numbers have a higher initial response rate to eltrombopag.
6.A single-center analysis of pathogenic bacteria distribution and drug resistance in bacterial bloodstream infections among patients with hematological diseases
Mengting CHE ; Chaomeng WANG ; Hui LIU ; Haifang KONG ; Lijuan LI ; Jia SONG ; Huaquan WANG ; Guojin WANG ; Yuhong WU ; Jing GUAN ; Limin XING ; Wen QU ; Hong LIU ; Xiaoming WANG ; Zhidong HU ; Zonghong SHAO ; Rong FU
Chinese Journal of Hematology 2024;45(10):937-943
Objective:To analyze the distribution and drug resistance of pathogens of bacterial bloodstream infection in patients with hematological diseases in the Department of Hematology of Tianjin Medical University General Hospital, and to provide etiological data for clinical empirical anti-infection treatment.Methods:A retrospective analysis was conducted on the general clinical information, pathogenic bacteria and drug susceptibility test results of patients with hematological diseases diagnosed with bacterial bloodstream infection by menstrual blood culture in our center from January 2016 to December 2022.Results:Patients included 498 inpatients, with a total of 639 bacterial strains. Among the patients, 86.9% patients had malignancies, and 76.7% had agranulocytosis. Symptoms of concurrent infections, including those of the respiratory tract, oral mucosa, skin and soft tissues, and abdominal sources were observed in 68.3% patients. Gram-negative bacteria (G -) accounted for 79.0% of the isolated bacteria, and gram-positive bacteria (G +) accounted for 21.0%. The top five isolated pathogens were Klebsiella pneumoniae (22.5%), Escherichia coli (20.8%), Pseudomonas aeruginosa (15.0%), Enterococcus faecium (5.5%), and Stenotrophomonas maltophilum (5.0%). Escherichia coli exhibited a decreasing trend of resistance to quinolones, cephalosporins, and carbapenems. Klebsiella pneumoniae exhibited increasing rates of resistance to quinolones and cephalosporins between 2016 and 2018, but the rated decreased after 2019. The resistance rate to carbapenems exhibited by Pseudomonas aeruginosa was approximately 20%. Carbapenem-resistant strains of Pseudomonas aeruginosa strains were first detected in 2017, with a peak resistance rate of 35.7%, detected in 2019. A 60.0% resistance rate to methicillin was observed in methicillin-resistant coagulase-negative staphylococci (MRCNS), and one case of linezolid-resistant MRCNS was detected. Conclusions:Pathogenic bacteria of bacterial bloodstream infections were widely distributed in our center, and precautions are warranted against carbapenem resistant P. aeruginosa and Klebsiella pneumoniae.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail