1.A Single-Arm Phase II Clinical Trial of Fulvestrant Combined with Neoadjuvant Chemotherapy of ER+/HER2– Locally Advanced Breast Cancer: Integrated Analysis of 18F-FES PET-CT and Metabolites with Treatment Response
Qing SHAO ; Ningning ZHANG ; Xianjun PAN ; Wenqi ZHOU ; Yali WANG ; Xiaoliang CHEN ; Jing WU ; Xiaohua ZENG
Cancer Research and Treatment 2025;57(1):126-139
Purpose:
This Phase II trial was objected to evaluate the efficacy and safety of adding fulvestrant to neoadjuvant chemotherapy in patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)– locally advanced breast cancer (LABC). Additionally, the study aimed to investigate the association of 16α-18F-fluoro-17β-fluoroestradiol (18F-FES) positron emission tomography (PET)–computed tomography (CT) and metabolites with efficacy.
Materials and Methods:
Fulvestrant and EC-T regimen were given to ER+/HER2– LABC patients before surgery. At baseline, patients received 18F-FES PET-CT scan, and plasma samples were taken for liquid chromatography–mass spectrometry analysis. The primary endpoint was objective response rate (ORR). Secondary endpoints included total pathologic complete response (tpCR) and safety.
Results:
Among the 36 patients enrolled, the ORR was 86.1%, the tpCR rate was 8.3%. The incidence of grade ≥ 3 treatment-emergent adverse events was 22%. The decrease in ER value in sensitive patients was larger than that in non-sensitive patients, as was Ki-67 (p < 0.05). The maximum standardized uptake value, mean standardized uptake values, total lesion ER expression of 18F-FES PET-CT in sensitive patients were significantly higher than those in non-sensitive patients (p < 0.05). Moreover, these parameters were significantly correlated with Miller and Payne grade and the change in ER expression before and after treatment (p < 0.05). Thirteen differential expressed metabolites were identified, which were markedly enriched in 19 metabolic pathways.
Conclusion
This regimen demonstrated acceptable toxicity and encouraging antitumor efficacy. 18F-FES PET-CT might serve as a tool to predict the effectiveness of this therapy. Altered metabolites or metabolic pathways might be associated with treatment response.
2.A Single-Arm Phase II Clinical Trial of Fulvestrant Combined with Neoadjuvant Chemotherapy of ER+/HER2– Locally Advanced Breast Cancer: Integrated Analysis of 18F-FES PET-CT and Metabolites with Treatment Response
Qing SHAO ; Ningning ZHANG ; Xianjun PAN ; Wenqi ZHOU ; Yali WANG ; Xiaoliang CHEN ; Jing WU ; Xiaohua ZENG
Cancer Research and Treatment 2025;57(1):126-139
Purpose:
This Phase II trial was objected to evaluate the efficacy and safety of adding fulvestrant to neoadjuvant chemotherapy in patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)– locally advanced breast cancer (LABC). Additionally, the study aimed to investigate the association of 16α-18F-fluoro-17β-fluoroestradiol (18F-FES) positron emission tomography (PET)–computed tomography (CT) and metabolites with efficacy.
Materials and Methods:
Fulvestrant and EC-T regimen were given to ER+/HER2– LABC patients before surgery. At baseline, patients received 18F-FES PET-CT scan, and plasma samples were taken for liquid chromatography–mass spectrometry analysis. The primary endpoint was objective response rate (ORR). Secondary endpoints included total pathologic complete response (tpCR) and safety.
Results:
Among the 36 patients enrolled, the ORR was 86.1%, the tpCR rate was 8.3%. The incidence of grade ≥ 3 treatment-emergent adverse events was 22%. The decrease in ER value in sensitive patients was larger than that in non-sensitive patients, as was Ki-67 (p < 0.05). The maximum standardized uptake value, mean standardized uptake values, total lesion ER expression of 18F-FES PET-CT in sensitive patients were significantly higher than those in non-sensitive patients (p < 0.05). Moreover, these parameters were significantly correlated with Miller and Payne grade and the change in ER expression before and after treatment (p < 0.05). Thirteen differential expressed metabolites were identified, which were markedly enriched in 19 metabolic pathways.
Conclusion
This regimen demonstrated acceptable toxicity and encouraging antitumor efficacy. 18F-FES PET-CT might serve as a tool to predict the effectiveness of this therapy. Altered metabolites or metabolic pathways might be associated with treatment response.
3.A Single-Arm Phase II Clinical Trial of Fulvestrant Combined with Neoadjuvant Chemotherapy of ER+/HER2– Locally Advanced Breast Cancer: Integrated Analysis of 18F-FES PET-CT and Metabolites with Treatment Response
Qing SHAO ; Ningning ZHANG ; Xianjun PAN ; Wenqi ZHOU ; Yali WANG ; Xiaoliang CHEN ; Jing WU ; Xiaohua ZENG
Cancer Research and Treatment 2025;57(1):126-139
Purpose:
This Phase II trial was objected to evaluate the efficacy and safety of adding fulvestrant to neoadjuvant chemotherapy in patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)– locally advanced breast cancer (LABC). Additionally, the study aimed to investigate the association of 16α-18F-fluoro-17β-fluoroestradiol (18F-FES) positron emission tomography (PET)–computed tomography (CT) and metabolites with efficacy.
Materials and Methods:
Fulvestrant and EC-T regimen were given to ER+/HER2– LABC patients before surgery. At baseline, patients received 18F-FES PET-CT scan, and plasma samples were taken for liquid chromatography–mass spectrometry analysis. The primary endpoint was objective response rate (ORR). Secondary endpoints included total pathologic complete response (tpCR) and safety.
Results:
Among the 36 patients enrolled, the ORR was 86.1%, the tpCR rate was 8.3%. The incidence of grade ≥ 3 treatment-emergent adverse events was 22%. The decrease in ER value in sensitive patients was larger than that in non-sensitive patients, as was Ki-67 (p < 0.05). The maximum standardized uptake value, mean standardized uptake values, total lesion ER expression of 18F-FES PET-CT in sensitive patients were significantly higher than those in non-sensitive patients (p < 0.05). Moreover, these parameters were significantly correlated with Miller and Payne grade and the change in ER expression before and after treatment (p < 0.05). Thirteen differential expressed metabolites were identified, which were markedly enriched in 19 metabolic pathways.
Conclusion
This regimen demonstrated acceptable toxicity and encouraging antitumor efficacy. 18F-FES PET-CT might serve as a tool to predict the effectiveness of this therapy. Altered metabolites or metabolic pathways might be associated with treatment response.
4.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
5.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
6.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic
7.Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Jin-Ping LIU
Chinese Journal of Contemporary Pediatrics 2025;27(7):778-785
To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.
Humans
;
Cardiac Surgical Procedures
;
Blood Transfusion/standards*
;
Child
;
Practice Guidelines as Topic
8.Extracellular vesicles deliver thioredoxin to rescue stem cells from senescence and intervertebral disc degeneration via a feed-forward circuit of the NRF2/AP-1 composite pathway.
Xuanzuo CHEN ; Sheng LIU ; Huiwen WANG ; Yiran LIU ; Yan XIAO ; Kanglu LI ; Feifei NI ; Wei WU ; Hui LIN ; Xiangcheng QING ; Feifei PU ; Baichuan WANG ; Zengwu SHAO ; Yizhong PENG
Acta Pharmaceutica Sinica B 2025;15(2):1007-1022
Intervertebral disc degeneration (IDD) is largely attributed to impaired endogenous repair. Nucleus pulposus-derived stem cells (NPSCs) senescence leads to endogenous repair failure. Small extracellular vesicles/exosomes derived from mesenchymal stem cells (mExo) have shown great therapeutic potential in IDD, while whether mExo could alleviate NPSCs senescence and its mechanisms remained unknown. We established a compression-induced NPSCs senescence model and rat IDD models to evaluate the therapeutic efficiency of mExo and investigate the mechanisms. We found that mExo significantly alleviated NPSCs senescence and promoted disc regeneration while knocking down thioredoxin (TXN) impaired the protective effects of mExo. TXN was bound to various endosomal sorting complex required for transport (ESCRT) proteins. Autocrine motility factor receptor (AMFR) mediated TXN K63 ubiquitination to promote the binding of TXN on ESCRT proteins and sorting of TXN into mExo. Knocking down exosomal TXN inhibited the transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2) and activator protein 1 (AP-1). NRF2 and AP-1 inhibition reduced endogenous TXN production that was promoted by exosomal TXN. Inhibition of NRF2 in vivo diminished the anti-senescence and regenerative effects of mExo. Conclusively, AMFR-mediated TXN ubiquitination promoted the sorting of TXN into mExo, allowing exosomal TXN to promote endogenous TXN production in NPSCs via TXN/NRF2/AP-1 feed-forward circuit to alleviate NPSCs senescence and disc degeneration.
9.Ionizing Radiation Alters Circadian Gene Per1 Expression Profiles and Intracellular Distribution in HT22 and BV2 Cells.
Zhi Ang SHAO ; Yuan WANG ; Pei QU ; Zhou Hang ZHENG ; Yi Xuan LI ; Wei WANG ; Qing Feng WU ; Dan XU ; Ju Fang WANG ; Nan DING
Biomedical and Environmental Sciences 2025;38(11):1451-1457
10.Clinical management of refractory prolactinomas:stone to sharpen yan,blunt for profit
Rui-Feng WANG ; Xiao-Zhen YE ; Jian-Rui LI ; Jing LI ; Jia-Liang LI ; Zi-Xiang CONG ; Yan LU ; Nan WU ; Yi-Feng GE ; Chi-Yuan MA ; Jia-Qing SHAO
Medical Journal of Chinese People's Liberation Army 2024;49(11):1237-1243
Refractory prolactinoma is the most common pituitary neuroendocrine tumor.Dopamine receptor agonists(DA)are the primary choice for drug treatment.Most patients with prolactinomas respond well to DA.However,a minority of prolactinomas patients still show resistance to DA.Although drug-resistant and refractory prolactinomas are rare in clinical practice,their treatment is extremely challenging.Even a combination of drug therapy,multiple surgeries,and radiotherapy may not yield satisfactory outcomes.Therefore,standardizing the diagnosis and treatment process and pathway for refractory prolactionmas and exploring more effective multidisciplinary collaborative treatment strategies are urgent problems to be solved.In the clinical management of refractory prolactinomas,it is often necessary to consider the patient's condition comprehensively,replace other types of DA,or consider surgery,radiotherapy,and immunotherapy,which requires multidisciplinary diagnosis and treatment.This review synthesizes the latest literature at home and abroad to systematically discuss the latest advances in drug therapy,surgery,and radiotherapy treatments for refractory prolactionmas,aiming to provide new ideas for basic research,clinical diagnosis and treatment.

Result Analysis
Print
Save
E-mail