1.Genetic diagnosis and analysis of eight cases with central 22q11.2 deletion syndrome
Jing GUO ; Pengyun LI ; Jia CHE ; Shanshan ZHAI ; Weifang TIAN ; Ying LI ; Hua ZHANG ; Ling LIU
Chinese Journal of Medical Genetics 2024;41(2):145-149
Objective:To explore the pregnancy outcome and postpartum clinical phenotype of LCR22B/C~D central 22q11.2 deletion syndrome.Methods:For fetuses diagnosed with central 22q11.2 deletion by chromosomal microarray analysis (CMA) at the Prenatal Diagnosis Center of the Third Affiliated Hospital of Zhengzhou University from January 2019 to April 2022, their prenatal imaging, parental CMA verification, pregnancy outcomes and postpartum clinical phenotype were analyzed.Results:Eight cases of central 22q11.2 deletion syndrome were included, including six cases with LCR22B~D 22q11.2 deletions and two with LCR22C~D 22q11.2 deletions. Among the six cases with LCR22B~D type 22q11.2 deletions, three had shown cardiovascular malformations (right aortic arch, ventricular septal defect, mild tricuspid regurgitation), one had shown urinary defect (right kidney heterotopia). Two cases with LCR22C~D 22q11.2 deletions showed nonspecific ultrasonographic findings, including oligohydramnios with growth restriction and nuchal skin thickening. The CMA verification showed that six cases were inherited from their parents, and five couples had chosen to continue with the pregnancy. Postpartum follow-up showed that the physical and intellectual development of all children were normal. One couple had opted to terminate the pregnancy considering the ectopic fetal right kidney. Two remaining cases had decided to terminate their pregnancies without parental verification.Conclusion:The central 22q11.2 deletion syndrome of the LCR22B/C~D type is different from the classical types. Its genetic information mainly comes from parents. Prenatal imaging has mainly shown cardiovascular and urinary abnormalities. Postnatal growth and intellectual development have been normal. Therefore, the couples should be provided with suffice prenatal genetic counseling.
2.Single-nucleus transcriptomics reveals a gatekeeper role for FOXP1 in primate cardiac aging.
Yiyuan ZHANG ; Yandong ZHENG ; Si WANG ; Yanling FAN ; Yanxia YE ; Yaobin JING ; Zunpeng LIU ; Shanshan YANG ; Muzhao XIONG ; Kuan YANG ; Jinghao HU ; Shanshan CHE ; Qun CHU ; Moshi SONG ; Guang-Hui LIU ; Weiqi ZHANG ; Shuai MA ; Jing QU
Protein & Cell 2023;14(4):279-293
Aging poses a major risk factor for cardiovascular diseases, the leading cause of death in the aged population. However, the cell type-specific changes underlying cardiac aging are far from being clear. Here, we performed single-nucleus RNA-sequencing analysis of left ventricles from young and aged cynomolgus monkeys to define cell composition changes and transcriptomic alterations across different cell types associated with age. We found that aged cardiomyocytes underwent a dramatic loss in cell numbers and profound fluctuations in transcriptional profiles. Via transcription regulatory network analysis, we identified FOXP1, a core transcription factor in organ development, as a key downregulated factor in aged cardiomyocytes, concomitant with the dysregulation of FOXP1 target genes associated with heart function and cardiac diseases. Consistently, the deficiency of FOXP1 led to hypertrophic and senescent phenotypes in human embryonic stem cell-derived cardiomyocytes. Altogether, our findings depict the cellular and molecular landscape of ventricular aging at the single-cell resolution, and identify drivers for primate cardiac aging and potential targets for intervention against cardiac aging and associated diseases.
Aged
;
Animals
;
Humans
;
Aging/genetics*
;
Forkhead Transcription Factors/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Primates/metabolism*
;
Repressor Proteins/metabolism*
;
Transcriptome
;
Macaca fascicularis/metabolism*