1.Four proved cases of classic prescription
China Journal of Traditional Chinese Medicine and Pharmacy 2005;0(04):-
‘Typhoid fever and Miscellaneous Diseases’is well known as‘the origin of prescription’. Prescriptions in this book are reliable, exquisite and rigorous, can cure hard diseases using very few kinds of TCM. The principle of‘corresponding prescription to symptom’makes proved cases simple but highly effective to complex illnesses. This thesis introduced four proved cases of remedying miscellaneous internal medicine diseases under the guidance of determination of treatment based on syndrome differentiation, principle of correspondence of prescription and syndrome, the author used classic prescriptions, such as Wuzhuyu Decoction, Guizhi Shaoyao Zhimu Decoction, Guizhi and Houpo Xizi Decoction and Dachaihu Decocion.
2.Evaluation on measurement uncertainty of correction factors of fluconazole impurities determined by HPLC standard curve method
Ting XIAO ; Bufang MA ; Chen WANG ; Shangchen YAO ; Yanchun FENG ; Baoming NING
Journal of China Pharmaceutical University 2022;53(3):306-313
In this paper, the uncertainties of correction factors of fluconazole impurities determined by HPLC standard curve method were evaluated, and the main common factors affecting the accuracy of standard curve method were found, so as to improve the accuracy of the method.In this study, the corresponding fitting lines of fluconazole and its impurities A, B, C, D, F and I were established respectively, and the ratio of the slope of fitting lines of each impurity and its corresponding principal component was calculated as the correction factor of the impurity.Then on the basis of GUM method, the uncertainty of each impurity correction factor determined by standard curve method was evaluated according to the established uncertainty evaluation scheme of correction factor determination process.The correction factor and uncertainty of fluconazole impurities A, B, C, D, F and I were 1.068 ± 0.046, 0.102 ± 0.005, 0.0582 ± 0.0031, 1.382 ± 0.121, 0.802 ± 0.067 and 1.383 ± 0.119, respectively, and the coverage factor k was 2.Finally, the contribution rate of each uncertainty component was calculated.In the relative combined standard uncertainties urel(f) of fluconazole impurities A, B, C, D, F and I correction factors, the sum of contribution rate of slope uncertainty urel(K) of the linear equation of principal component and its impurity is more than 85%; in the slope uncertainties urel(K) of linear equation, the contribution rates of uncertainties of solution concentration in 8 of 12 data groups are more than 80%, and the contribution rates of uncertainties introduced by reference substance content in solution concentration are about 80%.It can be seen that the preparation of linear solution concentration is the most influential factor in the determination of impurity correction factor by standard curve method, followed by the linear fitting process.In the preparation process of linear solution concentration, the purity of reference substance is the most influential factor, followed by weighing and pipetting times.The conclusion can help the experimenters to better formulate experimental plans and ensure the accuracy of the results when doing similar work.
3.Establishment of national reference standard of tazobactam impurity A
Ting XIAO ; Chen WANG ; Ye TIAN ; Xia ZHANG ; Ying LIU ; Bufang MA ; Shuyu LIU ; Shangchen YAO ; Yanchun FENG
Journal of China Pharmaceutical University 2021;52(1):60-65
To improve the standard of quality control of tazobactam and its preparations in China, national reference standard of tazobactam impurity A was developed. After tazobactam impurity A was synthesized, its structure was validated by infrared (IR), mass spectrometry (MS) and nuclear magnetic resonance (NMR), and its content uniformity and short-term stability were measured and investigated. Then, water content and residue on ignition of impurity A were determined, and its purity was determined using high performance liquid chromatography (HPLC) with 10 mmol/L ammonium acetate solution-acetonitrile (98∶2) as the mobile phase. Mass balance method was used to determine the content of the first batch of tazobactam impurity A national standard substance. Meanwhile, nuclear magnetic quantitative method was used to calculate the content, which was mutually verified with the mass balance method. The developed reference material of tazobactam impurity A is consistent with the maximum degradation impurity in tazobactam system applicability solution and the reference material of tazobactam related substance A contained in USP41. Within the 95% confidence range, the ratio of inter- and intra-bottle variance of impurity A after separation was 0.61 (< F0.05(11,12)), proving that the uniformity was satisfying. The contents of organic impurity, water content and inorganic impurity in impurity A were 0.90%, 1.24% and 0.25%, respectively. The content of impurity A was determined to be 97.6% by mass balance method, which was basically consistent with the result of nuclear magnetic quantitative method (97.1%). Under the condition of 25 °C, the area normalized purity of impurity A was 99.1% at 0, 3, 5 and 10 days, proving that the sample was stable at room temperature for 10 days. Finally the first batch of national standard substance of tazobactam impurity A was established successfully.