1.Effect of Drinking Warm Water on Esophageal Preparation Before Peroral Endoscopic Myotomy in Patients With Achalasia
Hong Jin YOON ; Young Hoon YOUN ; Sung Hwan YOO ; Seyeon JEON ; Hyojin PARK
Journal of Neurogastroenterology and Motility 2022;28(2):231-236
Background/Aims:
Food retention, which is a characteristic observed in patients with achalasia, can interfere with peroral endoscopic myotomy (POEM).However, there is no established guideline for esophageal preparation for POEM. A previous study has shown that drinking warmwater may reduce the lower esophageal sphincter pressure in patients with achalasia. This study aims to evaluate the possibility ofproper preparation of POEM by instructing the patient to drink warm water.
Methods:
The warm water preparation was performed in 29 patients with achalasia who underwent POEM. The patients drank 1 L of warm water (60 o C) the night before POEM. We evaluated the esophageal clearness and determined the preparation quality. Twenty-nine patients were prospectively recruited and compared to control group. The control cohort comprised achalasia patients whoseendoscopic image was available from the achalasia database of our institution. A 1:2 propensity score-matched control cohort was established from the database of achalasia subjects (n = 155) to compare the outcome of the preparation.
Results:
In the warm water preparation group, only 1 patient (3.4%) had some solid retention, but it did not interfere with the POEM procedure. The grade of clearness (P = 0.016) and quality of preparation (P < 0.001) were significantly better in the warm water preparation group than in the matched control group. There was no any adverse event at all related to warm water preparation protocol.
Conclusions
Drinking warm water dramatically reduces esophageal food retention and significantly improves the quality of esophageal preparation.This simple protocol is quite useful, safe, and cost-effective in the preparation of achalasia patients for POEM.
2.Evaluation of the Osteoporosis Health Belief Scale in Korean Women.
Tae Hee KIM ; Young Sang LEE ; Dong Won BYUN ; Seyeon JANG ; Dong Su JEON ; Hae Hyeog LEE
Journal of Bone Metabolism 2013;20(1):25-30
BACKGROUND: The Osteoporosis Health Belief Scale (OHBS) is a 42-item questionnaire designed to assess susceptibility, seriousness, calcium benefits, calcium barriers, exercise benefits, exercise barriers, and health motivation related to osteoporosis. We aimed to evaluate its psychometric properties to enable the provision of educational tips regarding osteoporosis. METHODS: All women who had visited the department of obstetrics and gynecology (OBGYN) and whose bone mineral density was measured from January 2010 to December 2011 were enrolled by interview using the OHBS. We also evaluated the women's general clinical characteristics. RESULTS: One hundred seventy-seven women were enrolled in the present study. In the present study, the barriers to calcium intake subscale had the lowest mean score (15.03+/-3.02), and the Benefit of Exercise subscale had the highest (23.02+/-3.03). The scores for participants in their 20s were significantly higher than scores for those in their 70s on the Benefits of Exercise subscale and Barriers to Exercise subscale (P=0.014 and P=0.022, respectively). CONCLUSIONS: Education for health motivation to prevent osteoporosis is important for young women. Additional systematic education programs are needed for the general population.
Bone Density
;
Calcium
;
Female
;
Gynecology
;
Humans
;
Motivation
;
Obstetrics
;
Osteoporosis
;
Psychometrics
;
Surveys and Questionnaires
3.DGAT2 Plays a Crucial Role to Control ESRRAPROX1 Transcriptional Network to Maintain Hepatic Mitochondrial Sustainability
Yoseob LEE ; Yeseong HWANG ; Minki KIM ; Hyeonuk JEON ; Seyeon JOO ; Sungsoon FANG ; Jae-Woo KIM
Diabetes & Metabolism Journal 2024;48(5):901-914
Background:
Diacylglycerol O-acyltransferase 2 (DGAT2) synthesizes triacylglycerol (TG) from diacylglycerol; therefore, DGAT2 is considered as a therapeutic target for steatosis. However, the consequence of inhibiting DGAT2 is not fully investigated due to side effects including lethality and lipotoxicity. In this article, we observed the role of DGAT2 in hepatocarcinoma.
Methods:
The role of DGAT2 is analyzed via loss-of-function assay. DGAT2 knockdown (KD) and inhibitor treatment on HepG2 cell line was analyzed. Cumulative analysis of cell metabolism with bioinformatic data were assessed, and further compared with different cohorts of liver cancer patients and non-alcoholic fatty liver disease (NAFLD) patients to elucidate how DGAT2 is regulating cancer metabolism.
Results:
Mitochondrial function is suppressed in DGAT2 KD HepG2 cell along with the decreased lipid droplets. In the aspect of the cancer, DGAT2 KD upregulates cell proliferation. Analyzing transcriptome of NAFLD and hepatocellular carcinoma (HCC) patients highlights negatively correlating expression patterns of 73 lipid-associated genes including DGAT2. Cancer patients with the lower DGAT2 expression face lower survival rate. DGAT2 KD cell and patients’ transcriptome show downregulation in estrogen- related receptor alpha (ESRRA) via integrated system for motif activity response analysis (ISMARA), with increased dimerization with corepressor prospero homeobox 1 (PROX1).
Conclusion
DGAT2 sustains the stability of mitochondria in hepatoma via suppressing ESRRA-PROX1 transcriptional network and hinders HCC from shifting towards glycolytic metabolism, which lowers cell proliferation.
4.DGAT2 Plays a Crucial Role to Control ESRRAPROX1 Transcriptional Network to Maintain Hepatic Mitochondrial Sustainability
Yoseob LEE ; Yeseong HWANG ; Minki KIM ; Hyeonuk JEON ; Seyeon JOO ; Sungsoon FANG ; Jae-Woo KIM
Diabetes & Metabolism Journal 2024;48(5):901-914
Background:
Diacylglycerol O-acyltransferase 2 (DGAT2) synthesizes triacylglycerol (TG) from diacylglycerol; therefore, DGAT2 is considered as a therapeutic target for steatosis. However, the consequence of inhibiting DGAT2 is not fully investigated due to side effects including lethality and lipotoxicity. In this article, we observed the role of DGAT2 in hepatocarcinoma.
Methods:
The role of DGAT2 is analyzed via loss-of-function assay. DGAT2 knockdown (KD) and inhibitor treatment on HepG2 cell line was analyzed. Cumulative analysis of cell metabolism with bioinformatic data were assessed, and further compared with different cohorts of liver cancer patients and non-alcoholic fatty liver disease (NAFLD) patients to elucidate how DGAT2 is regulating cancer metabolism.
Results:
Mitochondrial function is suppressed in DGAT2 KD HepG2 cell along with the decreased lipid droplets. In the aspect of the cancer, DGAT2 KD upregulates cell proliferation. Analyzing transcriptome of NAFLD and hepatocellular carcinoma (HCC) patients highlights negatively correlating expression patterns of 73 lipid-associated genes including DGAT2. Cancer patients with the lower DGAT2 expression face lower survival rate. DGAT2 KD cell and patients’ transcriptome show downregulation in estrogen- related receptor alpha (ESRRA) via integrated system for motif activity response analysis (ISMARA), with increased dimerization with corepressor prospero homeobox 1 (PROX1).
Conclusion
DGAT2 sustains the stability of mitochondria in hepatoma via suppressing ESRRA-PROX1 transcriptional network and hinders HCC from shifting towards glycolytic metabolism, which lowers cell proliferation.
5.DGAT2 Plays a Crucial Role to Control ESRRAPROX1 Transcriptional Network to Maintain Hepatic Mitochondrial Sustainability
Yoseob LEE ; Yeseong HWANG ; Minki KIM ; Hyeonuk JEON ; Seyeon JOO ; Sungsoon FANG ; Jae-Woo KIM
Diabetes & Metabolism Journal 2024;48(5):901-914
Background:
Diacylglycerol O-acyltransferase 2 (DGAT2) synthesizes triacylglycerol (TG) from diacylglycerol; therefore, DGAT2 is considered as a therapeutic target for steatosis. However, the consequence of inhibiting DGAT2 is not fully investigated due to side effects including lethality and lipotoxicity. In this article, we observed the role of DGAT2 in hepatocarcinoma.
Methods:
The role of DGAT2 is analyzed via loss-of-function assay. DGAT2 knockdown (KD) and inhibitor treatment on HepG2 cell line was analyzed. Cumulative analysis of cell metabolism with bioinformatic data were assessed, and further compared with different cohorts of liver cancer patients and non-alcoholic fatty liver disease (NAFLD) patients to elucidate how DGAT2 is regulating cancer metabolism.
Results:
Mitochondrial function is suppressed in DGAT2 KD HepG2 cell along with the decreased lipid droplets. In the aspect of the cancer, DGAT2 KD upregulates cell proliferation. Analyzing transcriptome of NAFLD and hepatocellular carcinoma (HCC) patients highlights negatively correlating expression patterns of 73 lipid-associated genes including DGAT2. Cancer patients with the lower DGAT2 expression face lower survival rate. DGAT2 KD cell and patients’ transcriptome show downregulation in estrogen- related receptor alpha (ESRRA) via integrated system for motif activity response analysis (ISMARA), with increased dimerization with corepressor prospero homeobox 1 (PROX1).
Conclusion
DGAT2 sustains the stability of mitochondria in hepatoma via suppressing ESRRA-PROX1 transcriptional network and hinders HCC from shifting towards glycolytic metabolism, which lowers cell proliferation.
6.Revolutionizing Non–Small Cell Lung Cancer Diagnosis: Ultra-High-Sensitive ctDNA Analysis for Detecting Hotspot Mutations with Long-term Stored Plasma
Ji-Young LEE ; Seyeon JEON ; Ha Ra JUN ; Chang Ohk SUNG ; Se Jin JANG ; Chang-Min CHOI ; Sung-Min CHUN
Cancer Research and Treatment 2024;56(2):484-501
Purpose:
Circulating cell-free DNA (cfDNA) has great potential in clinical oncology. The prognostic and predictive values of cfDNA in non–small cell lung cancer (NSCLC) have been reported, with epidermal growth factor receptor (EGFR), KRAS, and BRAF mutations in tumor-derived cfDNAs acting as biomarkers during the early stages of tumor progression and recurrence. However, extremely low tumor-derived DNA rates hinder cfDNA application. We developed an ultra-high-sensitivity lung version 1 (ULV1) panel targeting BRAF, KRAS, and EGFR hotspot mutations using small amounts of cfDNA, allowing for semi-quantitative analysis with excellent limit-of-detection (0.05%).
Materials and Methods:
Mutation analysis was performed on cfDNAs extracted from the plasma of 104 patients with NSCLC by using the ULV1 panel and targeted next-generation sequencing (CT-ULTRA), followed by comparison analysis of mutation patterns previously screened using matched tumor tissue DNA.
Results:
The ULV1 panel demonstrated robust selective amplification of mutant alleles, enabling the detection of mutations with a high degree of analytical sensitivity (limit-of-detection, 0.025%-0.1%) and specificity (87.9%-100%). Applying ULV1 to NSCLC cfDNA revealed 51.1% (23/45) samples with EGFR mutations, increasing with tumor stage: 8.33% (stage I) to 78.26% (stage IV). Semi-quantitative analysis proved effective for low-mutation-fraction clinical samples. Comparative analysis with PANAMutyper EGFR exhibited substantial concordance (κ=0.84).
Conclusion
Good detection sensitivity (~80%) was observed despite the limited volume (1 mL) and long-term storage (12-50 months) of plasma used and is expected to increase with high cfDNA inputs. Thus, the ULV1 panel is a fast and cost-effective method for early diagnosis, treatment selection, and clinical follow-up of patients with NSCLC.
7.DGAT2 Plays a Crucial Role to Control ESRRAPROX1 Transcriptional Network to Maintain Hepatic Mitochondrial Sustainability
Yoseob LEE ; Yeseong HWANG ; Minki KIM ; Hyeonuk JEON ; Seyeon JOO ; Sungsoon FANG ; Jae-Woo KIM
Diabetes & Metabolism Journal 2024;48(5):901-914
Background:
Diacylglycerol O-acyltransferase 2 (DGAT2) synthesizes triacylglycerol (TG) from diacylglycerol; therefore, DGAT2 is considered as a therapeutic target for steatosis. However, the consequence of inhibiting DGAT2 is not fully investigated due to side effects including lethality and lipotoxicity. In this article, we observed the role of DGAT2 in hepatocarcinoma.
Methods:
The role of DGAT2 is analyzed via loss-of-function assay. DGAT2 knockdown (KD) and inhibitor treatment on HepG2 cell line was analyzed. Cumulative analysis of cell metabolism with bioinformatic data were assessed, and further compared with different cohorts of liver cancer patients and non-alcoholic fatty liver disease (NAFLD) patients to elucidate how DGAT2 is regulating cancer metabolism.
Results:
Mitochondrial function is suppressed in DGAT2 KD HepG2 cell along with the decreased lipid droplets. In the aspect of the cancer, DGAT2 KD upregulates cell proliferation. Analyzing transcriptome of NAFLD and hepatocellular carcinoma (HCC) patients highlights negatively correlating expression patterns of 73 lipid-associated genes including DGAT2. Cancer patients with the lower DGAT2 expression face lower survival rate. DGAT2 KD cell and patients’ transcriptome show downregulation in estrogen- related receptor alpha (ESRRA) via integrated system for motif activity response analysis (ISMARA), with increased dimerization with corepressor prospero homeobox 1 (PROX1).
Conclusion
DGAT2 sustains the stability of mitochondria in hepatoma via suppressing ESRRA-PROX1 transcriptional network and hinders HCC from shifting towards glycolytic metabolism, which lowers cell proliferation.
8.Establishing Patient-Derived Cancer Cell Cultures and Xenografts in Biliary Tract Cancer
Jihoon KANG ; Ji-Young LEE ; Sunmin LEE ; Danbee KIM ; Jinyeong LIM ; Ha Ra JUN ; Seyeon JEON ; Young-Ae KIM ; Hye Seon PARK ; Kyu-pyo KIM ; Sung-Min CHUN ; Hee Jin LEE ; Changhoon YOO
Cancer Research and Treatment 2023;55(1):219-230
Purpose:
Biliary tract cancers (BTCs) are rare and show a dismal prognosis with limited treatment options. To improve our understanding of these heterogeneous tumors and develop effective therapeutic agents, suitable preclinical models reflecting diverse tumor characteristics are needed. We established and characterized new patient-derived cancer cell cultures and patient-derived xenograft (PDX) models using malignant ascites from five patients with BTC.
Materials and Methods:
Five patient-derived cancer cell cultures and three PDX models derived from malignant ascites of five patients with BTC, AMCBTC-01, -02, -03, -04, and -05, were established. To characterize the models histogenetically and confirm whether characteristics of the primary tumor were maintained, targeted sequencing and histopathological comparison between primary tissue and xenograft tumors were performed.
Results:
From malignant ascites of five BTC patients, five patient-derived cancer cell cultures (100% success rate), and three PDXs (60% success rate) were established. The morphological characteristics of three primary xenograft tumors were compared with those of matched primary tumors, and they displayed a similar morphology. The mutated genes in samples (models, primary tumor tissue, or both) from more than one patient were TP53 (n=2), KRAS (n=2), and STK11 (n=2). Overall, the pattern of commonly mutated genes in BTC cell cultures was different from that in commercially available BTC cell lines.
Conclusion
We successfully established the patient-derived cancer cell cultures and xenograft models derived from malignant ascites in BTC patients. These models accompanied by different genetic characteristics from commercially available models will help better understand BTC biology.