1.The Association of COVID-19 and Reactive Oxygen Species Modulator 1 (ROMO1) with Oxidative Stress
Mohammad Amin AMINI ; Jamshid KARIMI ; Seyed Saman TALEBI ; Hosein PIRI
Chonnam Medical Journal 2022;58(1):1-5
There is no denying that the massive spread of COVID-19 around the world has worried everyone. The virus can cause mild to severe symptoms in various organs, especially the lungs. The virus affects oxidative stress in the cells. Reactive Oxygen Species modulator 1 (ROMO1) is one of the most important mitochondrial proteins that plays a critical regulatory role in the production of Reactive Oxygen Species (ROS). According to the studies, COVID-19 can promote oxidative stress through some important pathways, for instance, TNF-α and NF-κB routes. Furthermore, ROMO1 is closely related to these pathways and its dysfunction may affect these routes, then promote oxidative stress, and ultimately cause tissue damage, especially in the lungs. Another factor to consider is that the TNF-α and NF-κB pathways are associated with ROMO1, COVID-19, and oxidative stress. To summarize, it is hypothesized that COVID-19 may increase oxidative stress by affecting ROMO1. Understanding the exact molecular mechanisms of ROMO1 in the pathogenesis of COVID-19 can pave the way to find better therapeutic strategies.
2.Reactive Oxygen Species Modulator 1 (ROMO1), a New Potential Target for Cancer Diagnosis and Treatment
Mohammad Amin AMINI ; Seyed Saman TALEBI ; Jamshid KARIMI
Chonnam Medical Journal 2019;55(3):136-143
Today, the incidence of cancer in the world is rising, and it is expected that in the next several decades, the number of people suffering from cancer or (the cancer rate) will double. Cancer is defined as the excessive and uncontrolled growth of cells; of course (in simple terms), cancer is considered to be a set of other diseases that ultimately causes normal cells to be transformed into neoplastic cells. One of the most important causes of the onset and exacerbation of cancer is excessive oxidative stress. One of the most important proteins in the inner membrane of mitochondria is Reactive Oxygen Species (ROS) Modulator 1 (ROMO1) that interferes with the production of ROS, and with increasing the rate of this protein, oxidative stress will increase, which ultimately leads to some diseases, especially cancer. In this overview, we use some global databases to provide information about ROMO1 cellular signaling pathways, their related proteins and molecules, and some of the diseases associated with the mitochondrial protein, especially cancer.
Diagnosis
;
Incidence
;
Membranes
;
Mitochondria
;
Mitochondrial Proteins
;
Oxidative Stress
;
Reactive Oxygen Species
3.The Association of Oxidative Stress and Reactive Oxygen Species Modulator 1 (ROMO1) with Infertility: A Mini Review
Mohammad Amin AMINI ; Masoud KARIMI ; Seyed Saman TALEBI ; Hossein PIRI ; Jamshid KARIMI
Chonnam Medical Journal 2022;58(3):91-95
Infertility is one of the disorders that worries many couples around the world, although novel and molecular methods can be used to cure this disease in different stages. One of the factors that causes infertility in men and women is the increased oxidative stress within the cells, which can lead to damage in zygote formation. ROMO1 is one of the most important proteins in the production of reactive oxygen species. This protein can enhance oxidative stress in the cells and body through cellular pathways, such as TNF-α and NF-κB routes, which will eventually lead to many diseases, especially infertility. We engage several international databases by using keywords; ROMO1, Infertility, and Reactive Oxygen Species, and gained a great quantity of information about ROMO1, Infertility, and Oxidative Stress. Although not proven, it is hypothesized that ROMO1 might elevate oxidative stress by activating NF-κB pathway in the cells, furthermore, TNF-αcan arouse ROMO1 that can end up with apoptosis and cell death, which consequently can have a lot of disturbing effects on the body, especially the reproductive system. To sum up, revealing the exact cellular and molecular mechanisms of ROMO1-dependent TNF-α and NF-κB pathways in the pathogenesis of infertility might find interesting therapeutic and management strategies for this disorder.