1.Effect of organic acids in dental biofilm on microhardness of a silorane-based composite.
Sedighe Sadat HASHEMIKAMANGAR ; Seyed Jalal POURHASHEMI ; Mohammad TALEBI ; Nazanin KIOMARSI ; Mohammad Javad KHARAZIFARD
Restorative Dentistry & Endodontics 2015;40(3):188-194
OBJECTIVES: This study evaluated the effect of lactic acid and acetic acid on the microhardness of a silorane-based composite compared to two methacrylate-based composite resins. MATERIALS AND METHODS: Thirty disc-shaped specimens each were fabricated of Filtek P90, Filtek Z250 and Filtek Z350XT. After measuring of Vickers microhardness, they were randomly divided into 3 subgroups (n = 10) and immersed in lactic acid, acetic acid or distilled water. Microhardness was measured after 48 hr and 7 day of immersion. Data were analyzed using repeated measures ANOVA (p < 0.05). The surfaces of two additional specimens were evaluated using a scanning electron microscope (SEM) before and after immersion. RESULTS: All groups showed a reduction in microhardness after 7 day of immersion (p < 0.001). At baseline and 7 day, the microhardness of Z250 was the greatest, followed by Z350 and P90 (p < 0.001). At 48 hr, the microhardness values of Z250 and Z350 were greater than P90 (p < 0.001 for both), but those of Z250 and Z350 were not significantly different (p = 0.095). Also, the effect of storage media on microhardness was not significant at baseline, but significant at 48 hr and after 7 day (p = 0.001 and p < 0.001, respectively). Lactic acid had the greatest effect. CONCLUSIONS: The microhardness of composites decreased after 7 day of immersion. The microhardness of P90 was lower than that of other composites. Lactic acid caused a greater reduction in microhardness compared to other solutions.
Acetic Acid
;
Biofilms*
;
Composite Resins
;
Immersion
;
Lactic Acid
;
Water
2.Effect of 38% carbamide peroxide on the microleakage of silorane-based versus methacrylate-based composite restorations.
Sedighe Sadat HASHEMI KAMANGAR ; Maryam GHAVAM ; Nazanin MAHINFAR ; Seyed Jalal POURHASHEMI
Restorative Dentistry & Endodontics 2014;39(3):172-179
OBJECTIVES: This study aimed to assess the effect of 38% carbamide peroxide on the microleakage of class V cavities restored with either a silorane-based composite or two methacrylate-based composites. MATERIALS AND METHODS: A total of 96 class V cavities were prepared on the buccal surface of extracted human teeth with both enamel and dentin margins and were randomly assigned into three groups of Filtek P90 (3M-ESPE) + P90 system adhesive (3M-ESPE)(group A), Filtek Z250 (3M-ESPE) + Adper Prompt L-Pop (3M-ESPE)(group B) and Filtek Z350XT (3M-ESPE) + Adper Prompt L-Pop (group C). Half of the teeth were randomly underwent bleaching (38% carbamide peroxide, Day White, Discus Dental, applying for 15 min, twice a day for 14 day) while the remaining half (control) were not bleached. Dye penetration was measured following immersion in basic fuchsine. Data were statistically analyzed using Kruskal-Wallis and Mann-Whitney U tests at a level of 0.05. RESULTS: No significant differences were found between composites in the control groups in enamel (p = 0.171) or dentin (p = 0.094) margins. After bleaching, microleakage of Z250 (in enamel [p = 0.867] or dentin [p = 0.590] margins) and Z350 (in enamel [p = 0.445] or dentin [p = 0.591] margins) did not change significantly, but the microleakage of P90 significantly increased in both enamel (p = 0.042) and dentin (p = 0.002) margins. CONCLUSIONS: No significant differences were noted between the bleached and control subgroups of two methacrylate-based composites in enamel or dentin margins. Microleakage of silorane-based composite significantly increased after bleaching.
Adhesives
;
Dental Enamel
;
Dentin
;
Humans
;
Immersion
;
Rosaniline Dyes
;
Tooth
;
Tooth Bleaching
;
Urea*