1.Molecular Detection and Subtyping of Blastocystis in Korean Pigs
Seunghyun PAIK ; Byeong Yeal JUNG ; Haeseung LEE ; Mi Hye HWANG ; Jee Eun HAN ; Man Hee RHEE ; Tae Hwan KIM ; Oh Deog KWON ; Dongmi KWAK
The Korean Journal of Parasitology 2019;57(5):525-529
Blastocystis is one of the most commonly detected genera of protozoan parasites in the human intestines as well as the intestines of many other species such as pigs in several geographical regions worldwide. However, no studies have examined Blastocystis in pigs in Korea. In this study, PCR and nucleotide sequencing were performed to evaluate the genetic diversity and zoonotic potential of Blastocystis using pig fecal samples. We obtained 646 stool samples from groups of piglets, weaners, growers, finishers, and sows in Korea. A total of 390 Blastocystis-positive samples were identified, and the infection rate was 60.4%. The infection rates were significantly related to age and region. The 4 subtypes (STs) of Blastocystis confirmed by phylogenetic analysis were ST1, ST2, ST3, and ST5, indicating the high genetic diversity of Blastocystis in Korean pigs. ST5 was highly distributed in Korean pigs among detected STs in this study. Some sequences were closely related to those of Blastocystis isolated from humans. This is the first study of Blastocystis in pigs in Korea. Based on the results, Blastocystis is prevalent in Korean pigs. Although a small number of samples were obtained in some areas, the clinical development of Blastocystis infection in pigs and potential for human transmission should be further examined.
Blastocystis Infections
;
Blastocystis
;
Genetic Variation
;
Humans
;
Intestines
;
Korea
;
Parasites
;
Phylogeny
;
Polymerase Chain Reaction
;
Prevalence
;
Swine
2.A comparison of metabolomic changes in type-1 diabetic C57BL/6N mice originating from different sources.
Seunghyun LEE ; Jae Hwan KWAK ; Sou Hyun KIM ; Jieun YUN ; Joon Yong CHO ; Kilsoo KIM ; Daeyeon HWANG ; Young Suk JUNG
Laboratory Animal Research 2018;34(4):232-238
Animal models have been used to elucidate the pathophysiology of varying diseases and to provide insight into potential targets for therapeutic intervention. Although alternatives to animal testing have been proposed to help overcome potential drawbacks related to animal experiments and avoid ethical issues, their use remains vital for the testing of new drug candidates and to identify the most effective strategies for therapeutic intervention. Particularly, the study of metabolic diseases requires the use of animal models to monitor whole-body physiology. In line with this, the National Institute of Food and Drug Safety Evaluation (NIFDS) in Korea has established their own animal strains to help evaluate both efficacy and safety during new drug development. The objective of this study was to characterize the response of C57BL/6NKorl mice from the NIFDS compared with that of other mice originating from the USA and Japan in a chemical-induced diabetic condition. Multiple low-dose treatments with streptozotocin were used to generate a type-1 diabetic animal model which is closely linked to the known clinical pathology of this disease. There were no significantly different responses observed between the varying streptozotocin-induced type-1 diabetic models tested in this study. When comparing control and diabetic mice, increases in liver weight and disturbances in serum amino acids levels of diabetic mice were most remarkable. Although the relationship between type-1 diabetes and BCAA has not been elucidated in this study, the results, which reveal a characteristic increase in diabetic mice of all origins are considered worthy of further study.
Amino Acids
;
Amino Acids, Branched-Chain
;
Animal Experimentation
;
Animal Testing Alternatives
;
Animals
;
Ethics
;
Japan
;
Korea
;
Liver
;
Metabolic Diseases
;
Metabolomics*
;
Mice*
;
Models, Animal
;
Pathology, Clinical
;
Physiology
;
Streptozocin
3.Diagnostic Performance of a New Convolutional Neural Network Algorithm for Detecting Developmental Dysplasia of the Hip on Anteroposterior Radiographs
Hyoung Suk PARK ; Kiwan JEON ; Yeon Jin CHO ; Se Woo KIM ; Seul Bi LEE ; Gayoung CHOI ; Seunghyun LEE ; Young Hun CHOI ; Jung-Eun CHEON ; Woo Sun KIM ; Young Jin RYU ; Jae-Yeon HWANG
Korean Journal of Radiology 2021;22(4):612-623
Objective:
To evaluate the diagnostic performance of a deep learning algorithm for the automated detection of developmental dysplasia of the hip (DDH) on anteroposterior (AP) radiographs.
Materials and Methods:
Of 2601 hip AP radiographs, 5076 cropped unilateral hip joint images were used to construct a dataset that was further divided into training (80%), validation (10%), or test sets (10%). Three radiologists were asked to label the hip images as normal or DDH. To investigate the diagnostic performance of the deep learning algorithm, we calculated the receiver operating characteristics (ROC), precision-recall curve (PRC) plots, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) and compared them with the performance of radiologists with different levels of experience.
Results:
The area under the ROC plot generated by the deep learning algorithm and radiologists was 0.988 and 0.988–0.919, respectively. The area under the PRC plot generated by the deep learning algorithm and radiologists was 0.973 and 0.618– 0.958, respectively. The sensitivity, specificity, PPV, and NPV of the proposed deep learning algorithm were 98.0, 98.1, 84.5, and 99.8%, respectively. There was no significant difference in the diagnosis of DDH by the algorithm and the radiologist with experience in pediatric radiology (p = 0.180). However, the proposed model showed higher sensitivity, specificity, and PPV, compared to the radiologist without experience in pediatric radiology (p < 0.001).
Conclusion
The proposed deep learning algorithm provided an accurate diagnosis of DDH on hip radiographs, which was comparable to the diagnosis by an experienced radiologist.
4.Inflammatory responses of C57BL/6NKorl mice to dextran sulfate sodium-induced colitis: comparison between three C57BL/6N sub-strains
Sou Hyun KIM ; Doyoung KWON ; Seung Won SON ; Tae Bin JEONG ; Seunghyun LEE ; Jae-Hwan KWAK ; Joon-Yong CHO ; Dae Youn HWANG ; Min-Soo SEO ; Kil Soo KIM ; Young-Suk JUNG
Laboratory Animal Research 2021;37(1):67-73
Background:
Inflammatory bowel disease (IBD), including both Crohn’s disease and ulcerative colitis, are chronic human diseases that are challenging to cure and are often unable to be resolved. The inbred mouse strain C57BL/ 6 N has been used in investigations of IBD as an experimental animal model. The purpose of the current study was to compare the inflammatory responsiveness of C57BL/6NKorl mice, a sub-strain recently established by the National Institute of Food and Drug Safety Evaluation (NIFDS), with those of C57BL/6 N mice from two different sources using a dextran sulfate sodium (DSS)-induced colitis model.
Results:
Male mice (8 weeks old) were administered DSS (0, 1, 2, or 3%) in drinking water for 7 days. DSS significantly decreased body weight and colon length and increased the colon weight-to-length ratio. Moreover, severe colitisrelated clinical signs including diarrhea and rectal bleeding were observed beginning on day 4 in mice administered DSS at a concentration of 3%. DSS led to edema, epithelial layer disruption, inflammatory cell infiltration, and cytokine induction (tumor necrosis factor-α, interleukin-6, and interleukin-1β) in the colon tissues. However, no significant differences in DSS-promoted abnormal symptoms or their severity were found between the three sub-strains.
Conclusions
These results indicate that C57BL/6NKorl mice responded to DSS-induced colitis similar to the generally used C57BL6/N mice, thus this newly developed mouse sub-strain provides a useful animal model of IBD.
5.Diagnostic Performance of a New Convolutional Neural Network Algorithm for Detecting Developmental Dysplasia of the Hip on Anteroposterior Radiographs
Hyoung Suk PARK ; Kiwan JEON ; Yeon Jin CHO ; Se Woo KIM ; Seul Bi LEE ; Gayoung CHOI ; Seunghyun LEE ; Young Hun CHOI ; Jung-Eun CHEON ; Woo Sun KIM ; Young Jin RYU ; Jae-Yeon HWANG
Korean Journal of Radiology 2021;22(4):612-623
Objective:
To evaluate the diagnostic performance of a deep learning algorithm for the automated detection of developmental dysplasia of the hip (DDH) on anteroposterior (AP) radiographs.
Materials and Methods:
Of 2601 hip AP radiographs, 5076 cropped unilateral hip joint images were used to construct a dataset that was further divided into training (80%), validation (10%), or test sets (10%). Three radiologists were asked to label the hip images as normal or DDH. To investigate the diagnostic performance of the deep learning algorithm, we calculated the receiver operating characteristics (ROC), precision-recall curve (PRC) plots, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) and compared them with the performance of radiologists with different levels of experience.
Results:
The area under the ROC plot generated by the deep learning algorithm and radiologists was 0.988 and 0.988–0.919, respectively. The area under the PRC plot generated by the deep learning algorithm and radiologists was 0.973 and 0.618– 0.958, respectively. The sensitivity, specificity, PPV, and NPV of the proposed deep learning algorithm were 98.0, 98.1, 84.5, and 99.8%, respectively. There was no significant difference in the diagnosis of DDH by the algorithm and the radiologist with experience in pediatric radiology (p = 0.180). However, the proposed model showed higher sensitivity, specificity, and PPV, compared to the radiologist without experience in pediatric radiology (p < 0.001).
Conclusion
The proposed deep learning algorithm provided an accurate diagnosis of DDH on hip radiographs, which was comparable to the diagnosis by an experienced radiologist.
6.Inflammatory responses of C57BL/6NKorl mice to dextran sulfate sodium-induced colitis: comparison between three C57BL/6N sub-strains
Sou Hyun KIM ; Doyoung KWON ; Seung Won SON ; Tae Bin JEONG ; Seunghyun LEE ; Jae-Hwan KWAK ; Joon-Yong CHO ; Dae Youn HWANG ; Min-Soo SEO ; Kil Soo KIM ; Young-Suk JUNG
Laboratory Animal Research 2021;37(1):67-73
Background:
Inflammatory bowel disease (IBD), including both Crohn’s disease and ulcerative colitis, are chronic human diseases that are challenging to cure and are often unable to be resolved. The inbred mouse strain C57BL/ 6 N has been used in investigations of IBD as an experimental animal model. The purpose of the current study was to compare the inflammatory responsiveness of C57BL/6NKorl mice, a sub-strain recently established by the National Institute of Food and Drug Safety Evaluation (NIFDS), with those of C57BL/6 N mice from two different sources using a dextran sulfate sodium (DSS)-induced colitis model.
Results:
Male mice (8 weeks old) were administered DSS (0, 1, 2, or 3%) in drinking water for 7 days. DSS significantly decreased body weight and colon length and increased the colon weight-to-length ratio. Moreover, severe colitisrelated clinical signs including diarrhea and rectal bleeding were observed beginning on day 4 in mice administered DSS at a concentration of 3%. DSS led to edema, epithelial layer disruption, inflammatory cell infiltration, and cytokine induction (tumor necrosis factor-α, interleukin-6, and interleukin-1β) in the colon tissues. However, no significant differences in DSS-promoted abnormal symptoms or their severity were found between the three sub-strains.
Conclusions
These results indicate that C57BL/6NKorl mice responded to DSS-induced colitis similar to the generally used C57BL6/N mice, thus this newly developed mouse sub-strain provides a useful animal model of IBD.
7.Combination Analysis of PCDHGA12and CDO1 DNA Methylation in Bronchial Washing Fluid for Lung Cancer Diagnosis
Se Jin PARK ; Daeun KANG ; Minhyeok LEE ; Su Yel LEE ; Young Gyu PARK ; TaeJeong OH ; Seunghyun JANG ; Wan Jin HWANG ; Sun Jung KWON ; Sungwhan AN ; Ji Woong SON ; In Beom JEONG
Journal of Korean Medical Science 2024;39(2):e28-
Background:
When suspicious lesions are observed on computer-tomography (CT), invasive tests are needed to confirm lung cancer. Compared with other procedures, bronchoscopy has fewer complications. However, the sensitivity of peripheral lesion through bronchoscopy including washing cytology is low. A new test with higher sensitivity through bronchoscopy is needed. In our previous study, DNA methylation of PCDHGA12 in bronchial washing cytology has a diagnostic value for lung cancer. In this study, combination of PCDHGA12 and CDO1 methylation obtained through bronchial washing cytology was evaluated as a diagnostic tool for lung cancer.
Methods:
A total of 187 patients who had suspicious lesions in CT were enrolled. PCDHGA12methylation test, CDO1 methylation test, and cytological examination were performed using 3-plex LTE-qMSP test.
Results:
Sixty-two patients were diagnosed with benign diseases and 125 patients were diagnosed with lung cancer. The sensitivity of PCDHGA12 was 74.4% and the specificity of PCDHGA12 was 91.9% respectively. CDO1 methylation test had a sensitivity of 57.6% and a specificity of 96.8%. The combination of both PCDHGA12 methylation test and CDO1 methylation test showed a sensitivity of 77.6% and a specificity of 90.3%. The sensitivity of lung cancer diagnosis was increased by combining both PCDHGA12 and CDO1 methylation tests.
Conclusion
Checking DNA methylation of both PCDHGA12 and CDO1 genes using bronchial washing fluid can reduce the invasive procedure to diagnose lung cancer.
8.Transduodenal ampullectomy for ampullary tumors - single center experience of consecutive 26 patients.
Sarang HONG ; Ki Byung SONG ; Young Joo LEE ; Kwang Min PARK ; Song Cheol KIM ; Dae Wook HWANG ; Jae Hoon LEE ; Sang Hyun SHIN ; Jaewoo KWON ; Chung Hyeun MA ; Seunghyun HWANG ; Guisuk PARK ; Yejong PARK ; Seung Jae LEE ; Yong Woon KIM
Annals of Surgical Treatment and Research 2018;95(1):22-28
PURPOSE: Transduodenal ampullectomy (TDA) has been reported in a limited number of cases and in a small number of case series. The aim of this study was to analyze perioperative and long-term oncological outcomes of patients with ampullary tumors who underwent TDA in a single large-volume center. METHODS: Through a retrospective review of data from 2004 to 2016, we identified 26 patients who underwent TDA at Asan Medical Center. RESULTS: Eleven of 26 patients underwent TDA for T1 and carcinoma in situ (high-grade dysplasia) cancer; these patients are still alive without recurrence. A major in-hospital complication (3.8%) occurred in 1 case, but there was no case of 90-day mortality. In addition, none of the patients was diagnosed as having newly developed diabetes mellitus after TDA. No significant differences were found between open and laparoscopic-TDA in terms of operation time, painkiller use, and hospital stay. CONCLUSION: TDA is a feasible and effective surgical procedure for the treatment of selected patients with ampullary tumors. It is an alternative treatment option in cases of ampullary tumors not amenable to endoscopic papillectomy or pancreaticoduodenectomy.
Ampulla of Vater
;
Carcinoma in Situ
;
Chungcheongnam-do
;
Diabetes Mellitus
;
Humans
;
Length of Stay
;
Mortality
;
Pancreaticoduodenectomy
;
Recurrence
;
Retrospective Studies
9.Comparative study of liver injury induced by high-fat methionine- and choline-deficient diet in ICR mice originating from three different sources
Seunghyun LEE ; Jae Hwan KWAK ; Sou Hyun KIM ; Tae Bin JEONG ; Seung Won SON ; Joung Hee KIM ; Yong LIM ; Joon Yong CHO ; Dae Youn HWANG ; Kil Soo KIM ; Young Suk JUNG
Laboratory Animal Research 2019;35(2):100-106
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. It is characterized by the accumulation of lipids without alcohol intake and often progresses to non-alcoholic steatohepatitis (NASH), liver fibrosis, and end-stage liver diseases such as cirrhosis or cancer. Although animal models have greatly contributed to the understanding of NAFLD, studies on the disease progression in humans are still limited. In this study, we used the recently reported high-fat L-methionine-defined and choline-deficient (HFMCD) diet to rapidly induce NASH and compared the responses to HFMCD in ICR mice from three different countries: Korea (supplied by the National Institute of Food and Drug Safety Evaluation), USA, and Japan during 6 weeks. Feeding HFMCD did not cause significant differences in weight gain in comparison with mice fed control diet. Relative weight of the liver increased gradually, while the relative weight of the kidneys remained unchanged. The parameters of liver injury (serum activities of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) increased rapidly from 1 week and remained elevated for as long as 6 weeks. Histopathological analysis showed that the accumulation of hepatic lipids induced by HFMCD was prominent at 1 week after diet supplementation and increased further at 6 weeks. Inflammatory markers were significantly increased in a time-dependent manner by HFMCD. The mRNA levels of TNF-α and IL-6 were elevated approximately 15-fold relative to control diet and that of IL-1β was increased more than 20-folds at 6 week after the onset of HFMCD intake. In addition, mRNA expression of fibrosis markers such as α-SMA, TGFβ1, and Col1a1 were also significantly increased at 6 week. In summary, the responses of Korl:ICR mice by intake of HFMCD diet were similar to those of ICR mice from other sources, which suggests that Korl:ICR mice is also a useful resource to study the pathogenesis of diet-induced NAFLD.
10.Comparison of toxic responses to acetaminophen challenge in ICR mice originating from different sources
Tae Bin JEONG ; Joung Hee KIM ; Sou Hyun KIM ; Seunghyun LEE ; Seung Won SON ; Yong LIM ; Joon Yong CHO ; Dae Youn HWANG ; Kil Soo KIM ; Jae Hwan KWAK ; Young Suk JUNG
Laboratory Animal Research 2019;35(3):107-113
Acetaminophen (APAP) is the most common antipyretic analgesic worldwide. However, APAP overdose causes severe liver injury, especially centrilobular necrosis, in humans and experimental animals. At therapeutic dosage, APAP is mainly metabolized by sulfation and glucuronidation, and partly by cytochrome P450–mediated oxidation. However, APAP overdose results in production of excess reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI), by cytochromes P450; NAPQI overwhelms the level of glutathione (GSH), which could otherwise detoxify it. NAPQI binds covalently to proteins, leading to cell death. A number of studies aimed at the prevention and treatment of APAP-induced toxicity are underway. Rats are more resistant than mice to APAP hepatotoxicity, and thus mouse models are mainly used. In the present study, we compared the toxic responses induced by APAP overdose in the liver of ICR mice obtained from three different sources and evaluated the usability of the Korl:ICR stock established by the National Institute of Food and Drug Safety Evaluation in Korea. Administration of APAP (300 mg/kg) by intraperitoneal injection into male ICR mice enhanced CYP2E1 protein expression and depleted hepatic GSH level 2 h after treatment accompanied with significantly increased level of hepatic malondialdehyde, a product of lipid peroxidation. Regardless of the source of the mice, hepatotoxicity, as evidenced by activity of serum alanine aminotransferase, increased from 8 h and peaked at 24 h after APAP treatment. In summary, hepatotoxicity was induced after the onset of oxidative stress by overdose of APAP, and the response was the same over time among mice of different origins.
Acetaminophen
;
Alanine Transaminase
;
Animals
;
Cell Death
;
Cytochrome P-450 CYP2E1
;
Cytochromes
;
Glutathione
;
Humans
;
Injections, Intraperitoneal
;
Korea
;
Lipid Peroxidation
;
Liver
;
Male
;
Malondialdehyde
;
Mice
;
Mice, Inbred ICR
;
Necrosis
;
Oxidative Stress
;
Rats