1.Voltage Regulation of Connexin Channel Conductance.
Seunghoon OH ; Thaddeus A BARGIELLO
Yonsei Medical Journal 2015;56(1):1-15
Voltage is an important parameter that regulates the conductance of both intercellular and plasma membrane channels (undocked hemichannels) formed by the 21 members of the mammalian connexin gene family. Connexin channels display two forms of voltage-dependence, rectification of ionic currents and voltage-dependent gating. Ionic rectification results either from asymmetries in the distribution of fixed charges due to heterotypic pairing of different hemichannels, or by channel block, arising from differences in the concentrations of divalent cations on opposite sides of the junctional plaque. This rectification likely underpins the electrical rectification observed in some electrical synapses. Both intercellular and undocked hemichannels also display two distinct forms of voltage-dependent gating, termed Vj (fast)-gating and loop (slow)-gating. This review summarizes our current understanding of the molecular determinants and mechanisms underlying these conformational changes derived from experimental, molecular-genetic, structural, and computational approaches.
Animals
;
Connexins/chemistry/*metabolism
;
Humans
;
*Ion Channel Gating
;
Ion Channels/chemistry/*metabolism
;
Molecular Dynamics Simulation
;
Protein Conformation
2.Bisphenol A and 4-tert-Octylphenol Inhibit Cx46 Hemichannel Currents.
The Korean Journal of Physiology and Pharmacology 2015;19(1):73-79
Connexins (Cx) are membrane proteins and monomers for forming gap junction (GJ) channels. Cx46 and Cx50 are also known to function as conductive hemichannels. As part of an ongoing effort to find GJ-specific blocker(s), endocrine disruptors were used to examine their effect on Cx46 hemichannels expressed in Xenopus oocytes. Voltage-dependent gating of Cx46 hemichannels was characterized by slowly activating outward currents and relatively fast inward tail currents. Bisphenol A (BPA, 10 nM) reduced outward currents of Cx46 hemichannels up to ~18% of control, and its effect was reversible (n=5). 4-tert-Octylphenol (OP, 1 microM) reversibly reduced outward hemichannel currents up to ~28% (n=4). However, overall shapes of Cx46 hemichannel current traces (outward and inward currents) were not changed by these drugs. These results suggest that BPA and OP are likely to occupy the pore of Cx46 hemichannels and thus obstruct the ionic fluxes. This finding provides that BPA and OP are potential candidates for GJ channel blockers.
Connexins
;
Endocrine Disruptors
;
Gap Junctions
;
Membrane Proteins
;
Oocytes
;
Xenopus
3.beta-TrCP1 degradation is a novel action mechanism of PI3K/mTOR inhibitors in triple-negative breast cancer cells.
Yong Weon YI ; Hyo Jin KANG ; Edward Jeong BAE ; Seunghoon OH ; Yeon Sun SEONG ; Insoo BAE
Experimental & Molecular Medicine 2015;47(2):e143-
An F-box protein, beta-TrCP recognizes substrate proteins and destabilizes them through ubiquitin-dependent proteolysis. It regulates the stability of diverse proteins and functions as either a tumor suppressor or an oncogene. Although the regulation by beta-TrCP has been widely studied, the regulation of beta-TrCP itself is not well understood yet. In this study, we found that the level of beta-TrCP1 is downregulated by various protein kinase inhibitors in triple-negative breast cancer (TNBC) cells. A PI3K/mTOR inhibitor PI-103 reduced the level of beta-TrCP1 in a wide range of TNBC cells in a proteasome-dependent manner. Concomitantly, the levels of c-Myc and cyclin E were also downregulated by PI-103. PI-103 reduced the phosphorylation of beta-TrCP1 prior to its degradation. In addition, knockdown of beta-TrCP1 inhibited the proliferation of TNBC cells. We further identified that pharmacological inhibition of mTORC2 was sufficient to reduce the beta-TrCP1 and c-Myc levels. These results suggest that mTORC2 regulates the stability of beta-TrCP1 in TNBC cells and targeting beta-TrCP1 is a potential approach to treat human TNBC.
Cell Line, Tumor
;
Cell Proliferation
;
Cell Survival/drug effects
;
Cyclin E/genetics/metabolism
;
Dose-Response Relationship, Drug
;
Female
;
Furans/pharmacology
;
Gene Knockdown Techniques
;
Humans
;
Models, Biological
;
Multiprotein Complexes/antagonists & inhibitors
;
Phosphatidylinositol 3-Kinases/*antagonists & inhibitors
;
Phosphorylation/drug effects
;
Protein Kinase Inhibitors/*pharmacology
;
Proteolysis/drug effects
;
Proto-Oncogene Proteins c-myc/genetics/metabolism
;
Pyridines/pharmacology
;
Pyrimidines/pharmacology
;
TOR Serine-Threonine Kinases/*antagonists & inhibitors
;
Triple Negative Breast Neoplasms/genetics/*metabolism
;
beta-Transducin Repeat-Containing Proteins/genetics/*metabolism
4.Increased Cellular NAD⁺ Level through NQO1 Enzymatic Action Has Protective Effects on Bleomycin-Induced Lung Fibrosis in Mice.
Gi Su OH ; Su Bin LEE ; Anjani KARNA ; Hyung Jin KIM ; AiHua SHEN ; Arpana PANDIT ; SeungHoon LEE ; Sei Hoon YANG ; Hong Seob SO
Tuberculosis and Respiratory Diseases 2016;79(4):257-266
BACKGROUND: Idiopathic pulmonary fibrosis is a common interstitial lung disease; it is a chronic, progressive, and fatal lung disease of unknown etiology. Over the last two decades, knowledge about the underlying mechanisms of pulmonary fibrosis has improved markedly and facilitated the identification of potential targets for novel therapies. However, despite the large number of antifibrotic drugs being described in experimental pre-clinical studies, the translation of these findings into clinical practices has not been accomplished yet. NADH:quinone oxidoreductase 1 (NQO1) is a homodimeric enzyme that catalyzes the oxidation of NADH to NAD+ by various quinones and thereby elevates the intracellular NAD⁺ levels. In this study, we examined the effect of increase in cellular NAD⁺ levels on bleomycin-induced lung fibrosis in mice. METHODS: C57BL/6 mice were treated with intratracheal instillation of bleomycin. The mice were orally administered with β-lapachone from 3 days before exposure to bleomycin to 1-3 weeks after exposure to bleomycin. Bronchoalveolar lavage fluid (BALF) was collected for analyzing the infiltration of immune cells. In vitro, A549 cells were treated with transforming growth factor β1 (TGF-β1) and β-lapachone to analyze the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT). RESULTS: β-Lapachone strongly attenuated bleomycin-induced lung inflammation and fibrosis, characterized by histological staining, infiltrated immune cells in BALF, inflammatory cytokines, fibrotic score, and TGF-β1, α-smooth muscle actin accumulation. In addition, β-lapachone showed a protective role in TGF-β1–induced ECM expression and EMT in A549 cells. CONCLUSION: Our results suggest that β-lapachone can protect against bleomycin-induced lung inflammation and fibrosis in mice and TGF-β1–induced EMT in vitro, by elevating the NAD+/NADH ratio through NQO1 activation.
Actins
;
Animals
;
Bleomycin
;
Bronchoalveolar Lavage Fluid
;
Cytokines
;
Epithelial-Mesenchymal Transition
;
Extracellular Matrix
;
Fibrosis*
;
Idiopathic Pulmonary Fibrosis
;
In Vitro Techniques
;
Inflammation
;
Lung Diseases
;
Lung Diseases, Interstitial
;
Lung*
;
Mice*
;
NAD
;
Pneumonia
;
Pulmonary Fibrosis
;
Quinones
;
Transforming Growth Factor beta1
;
Transforming Growth Factors
5.Immunosuppression-enhancing effect of the administration of allogeneic canine adipose-derived mesenchymal stem cells (cA-MSCs) compared with autologous cA-MSCs in vitro
Hayeon WI ; Seunghoon LEE ; Youngim KIM ; Jin-Gu NO ; Poongyeon LEE ; Bo Ram LEE ; Keon Bong OH ; Tai-young HUR ; Sun A OCK
Journal of Veterinary Science 2021;22(5):e63-
Background:
Recently, mesenchymal stem cells therapy has been performed in dogs, although the outcome is not always favorable.
Objectives:
To investigate the therapeutic efficacy of mesenchymal stem cells (MSCs) using dog leukocyte antigen (DLA) matching between the donor and recipient in vitro.
Methods:
Canine adipose-derived MSCs (cA-MSCs) isolated from the subcutaneous tissue of Dog 1 underwent characterization. For major DLA genotyping (DQA1, DQB1, and DRB1), peripheral blood mononuclear cells (PBMCs) from two dogs (Dogs 1 and 2) were analyzed by direct sequencing of polymerase chain reaction (PCR) products. The cA-MSCs were co-cultured at a 1:10 ratio with activated PBMCs (DLA matching or mismatching) for 3 days and analyzed for immunosuppressive ( IDO, PTGS2, and PTGES ), inflammatory (IL6 and IL10 ), and apoptotic genes (CASP8, BAX, TP53, and BCL2) by quantitative real-time reverse transcriptase-PCR.
Results:
cA-MSCs were expressed cell surface markers such as CD90+/44+/29+/45- and differentiated into osteocytes, chondrocytes, and adipocytes in vitro. According to the Immuno Polymorphism Database, DLA genotyping comparisons of Dogs 1 and 2 revealed complete differences in genes DQA1, DQB1, and DRB1. In the co-culturing of cA-MSCs and PBMCs, DLA mismatch between the two cell types induced a significant increase in the expression of immunosuppressive (IDO/PTGS2) and apoptotic (CASP8/BAX) genes.
Conclusions
The administration of cA-MSCs matching the recipient DLA type can alleviate the need to regulate excessive immunosuppressive responses associated with genes, such as IDO and PTGES. Furthermore, easy and reliable DLA genotyping technology is required because of the high degree of genetic polymorphisms of DQA1, DQB1, and DRB1 and the low readability of DLA 88.
6.Immunosuppression-enhancing effect of the administration of allogeneic canine adipose-derived mesenchymal stem cells (cA-MSCs) compared with autologous cA-MSCs in vitro
Hayeon WI ; Seunghoon LEE ; Youngim KIM ; Jin-Gu NO ; Poongyeon LEE ; Bo Ram LEE ; Keon Bong OH ; Tai-young HUR ; Sun A OCK
Journal of Veterinary Science 2021;22(5):e63-
Background:
Recently, mesenchymal stem cells therapy has been performed in dogs, although the outcome is not always favorable.
Objectives:
To investigate the therapeutic efficacy of mesenchymal stem cells (MSCs) using dog leukocyte antigen (DLA) matching between the donor and recipient in vitro.
Methods:
Canine adipose-derived MSCs (cA-MSCs) isolated from the subcutaneous tissue of Dog 1 underwent characterization. For major DLA genotyping (DQA1, DQB1, and DRB1), peripheral blood mononuclear cells (PBMCs) from two dogs (Dogs 1 and 2) were analyzed by direct sequencing of polymerase chain reaction (PCR) products. The cA-MSCs were co-cultured at a 1:10 ratio with activated PBMCs (DLA matching or mismatching) for 3 days and analyzed for immunosuppressive ( IDO, PTGS2, and PTGES ), inflammatory (IL6 and IL10 ), and apoptotic genes (CASP8, BAX, TP53, and BCL2) by quantitative real-time reverse transcriptase-PCR.
Results:
cA-MSCs were expressed cell surface markers such as CD90+/44+/29+/45- and differentiated into osteocytes, chondrocytes, and adipocytes in vitro. According to the Immuno Polymorphism Database, DLA genotyping comparisons of Dogs 1 and 2 revealed complete differences in genes DQA1, DQB1, and DRB1. In the co-culturing of cA-MSCs and PBMCs, DLA mismatch between the two cell types induced a significant increase in the expression of immunosuppressive (IDO/PTGS2) and apoptotic (CASP8/BAX) genes.
Conclusions
The administration of cA-MSCs matching the recipient DLA type can alleviate the need to regulate excessive immunosuppressive responses associated with genes, such as IDO and PTGES. Furthermore, easy and reliable DLA genotyping technology is required because of the high degree of genetic polymorphisms of DQA1, DQB1, and DRB1 and the low readability of DLA 88.
7.IntraBrain Injector (IBI): A StereotacticGuided Device for Repeated Delivery of Therapeutic Agents Into the Brain Parenchyma
Jeongmin LEE ; Sangwook LEE ; Wooram JUNG ; Guk Bae KIM ; Taehun KIM ; Jiwon SEONG ; Hyemin JANG ; Young NOH ; Na Kyung LEE ; Boo Rak LEE ; Jung-Il LEE ; Soo Jin CHOI ; Wonil OH ; Namkug KIM ; Seunghoon LEE ; Duk L. NA
Journal of Korean Medical Science 2022;37(31):e244-
Background:
To deliver therapeutics into the brain, it is imperative to overcome the issue of the blood-brain-barrier (BBB). One of the ways to circumvent the BBB is to administer therapeutics directly into the brain parenchyma. To enhance the treatment efficacy for chronic neurodegenerative disorders, repeated administration to the target location is required. However, this increases the number of operations that must be performed. In this study, we developed the IntraBrain Injector (IBI), a new implantable device to repeatedly deliver therapeutics into the brain parenchyma.
Methods:
We designed and fabricated IBI with medical grade materials, and evaluated the efficacy and safety of IBI in 9 beagles. The trajectory of IBI to the hippocampus was simulated prior to surgery and the device was implanted using 3D-printed adaptor and surgical guides. Ferumoxytol-labeled mesenchymal stem cells (MSCs) were injected into the hippocampus via IBI, and magnetic resonance images were taken before and after the administration to analyze the accuracy of repeated injection.
Results:
We compared the planned vs. insertion trajectory of IBI to the hippocampus.With a similarity of 0.990 ± 0.001 (mean ± standard deviation), precise targeting of IBI was confirmed by comparing planned vs. insertion trajectories of IBI. Multiple administrations of ferumoxytol-labeled MSCs into the hippocampus using IBI were both feasible and successful (success rate of 76.7%). Safety of initial IBI implantation, repeated administration of therapeutics, and long-term implantation have all been evaluated in this study.
Conclusion
Precise and repeated delivery of therapeutics into the brain parenchyma can be done without performing additional surgeries via IBI implantation.