1.Effective concentration of remifentanil for successful i-gel insertion during remimazolam induction
Jung Ju CHOI ; Wol Seon JUNG ; Young Jin CHANG ; Seungbeom YOO ; Hyun Jeong KWAK
Korean Journal of Anesthesiology 2023;76(3):235-241
Background:
Remifentanil can be used as adjuvants during remimazolam induction without neuromuscular blockade. We evaluated the 95% effective concentration (EC) of remifentanil effect-site concentration (Ce) for the successful insertion of an i-gel using the biased-coin up-and-down method in adult patients during remimazolam induction.
Methods:
Forty 19–65 year-old patients scheduled to undergo surgery using i-gel were enrolled. Anesthesia was induced using remimazolam infusion (12 mg/kg/h). Simultaneously, remifentanil was infused at a predetermined Ce. After 5 min of anesthesia induction, the i-gel was inserted. The 95% EC (EC95) of remifentanil in each patient was determined using a biased-coin up-and-down method based on a successful insertion in a preceding patient. The step size of remifentanil Ce was 0.4 ng/ml. If the insertion failed, remifentanil Ce was increased in the next patient. Following successful insertions, the corresponding concentration decreased in subsequent patients with a probability of 1/19 or was maintained with a probability of 18/19. The time from remimazolam infusion initiation to a bispectral index (BIS) < 60 (time to BIS60) and hemodynamic variables were measured and recorded.
Results:
The EC95 (95% CI) of Ce was 2.07 (1.94, 2.87) ng/ml. The overall time to BIS60 was 154.0 ± 39.9 s. No patient experienced significant hypotension or bradycardia during remimazolam induction.
Conclusions
The EC95 of remifentanil Ce was 2.07 (1.94, 2.87) ng/ml for successful i-gel insertion during remimazolam induction at 12 mg/kg/h without hemodynamic instability in adult patients. Future studies should measure remifentanil Ce in elderly patients or using remimazolam at various infusion doses.
2.Profiling of RNA-binding Proteins Interacting With Glucagon and Adipokinetic Hormone mRNAs
Seungbeom KO ; Eunbyul YEOM ; Yoo Lim CHUN ; Hyejin MUN ; Marina HOWARD-MCGUIRE ; Nathan T. MILLISON ; Junyang JUNG ; Kwang-Pyo LEE ; Changhan LEE ; Kyu-Sun LEE ; Joe R. DELANEY ; Je-Hyun YOON
Journal of Lipid and Atherosclerosis 2022;11(1):55-72
Objective:
Glucagon in mammals and its homolog (adipokinetic hormone [AKH] in Drosophila melanogaster) are peptide hormones which regulate lipid metabolism by breaking down triglycerides. Although regulatory mechanisms of glucagon and Akh expression have been widely studied, post-transcriptional gene expression of glucagon has not been investigated thoroughly. In this study, we aimed to profile proteins binding with Gcg messenger RNA (mRNA) in mouse and Akh mRNA in Drosophila.
Methods:
Drosophila Schneider 2 (S2) and mouse 3T3-L1 cell lysates were utilized for affinity pull down of Akh and Gcg mRNA respectively using biotinylated anti-sense DNA oligoes against target mRNAs. Mass spectrometry and computational network analysis revealed mRNA-interacting proteins residing in functional proximity.
Results:
We observed that 1) 91 proteins interact with Akh mRNA from S2 cell lysates, 2) 34 proteins interact with Gcg mRNA from 3T3-L1 cell lysates. 3) Akh mRNA interactome revealed clusters of ribosomes and known RNA-binding proteins (RBPs). 4) Gcg mRNA interactome revealed mRNA-binding proteins including Plekha7, zinc finger protein, carboxylase, lipase, histone proteins and a cytochrome, Cyp2c44. 5) Levels of Gcg mRNA and its interacting proteins are elevated in skeletal muscles isolated from old mice compared to ones from young mice.
Conclusion
Akh mRNA in S2 cells are under active translation in a complex of RBPs and ribosomes. Gcg mRNA in mouse precursor adipocyte is in a condition distinct from Akh mRNA due to biochemical interactions with a subset of RBPs and histones. We anticipate that our study contributes to investigating regulatory mechanisms of Gcg and Akh mRNA decay, translation, and localization.