1.B-cell translocation gene 2 positively regulates GLP-1-stimulated insulin secretion via induction of PDX-1 in pancreatic beta-cells.
Seung Lark HWANG ; Okyun KWON ; Sun Gyun KIM ; In Kyu LEE ; Yong Deuk KIM
Experimental & Molecular Medicine 2013;45(5):e25-
Glucagon-like peptide-1 (GLP-1) is a potent glucoincretin hormone and an important agent for the treatment of type 2 diabetes. Here we demonstrate that B-cell translocation gene 2 (BTG2) is a crucial regulator in GLP-1-induced insulin gene expression and insulin secretion via upregulation of pancreatic duodenal homeobox-1 (PDX-1) in pancreatic beta-cells. GLP-1 treatment significantly increased BTG2, PDX-1 and insulin gene expression in pancreatic beta-cells. Notably, adenovirus-mediated overexpression of BTG2 significantly elevated insulin secretion, as well as insulin and PDX-1 gene expression. Physical interaction studies showed that BTG2 is associated with increased PDX-1 occupancy on the insulin gene promoter via a direct interaction with PDX-1. Exendin-4 (Ex-4), a GLP-1 agonist, and GLP-1 in pancreatic beta-cells increased insulin secretion through the BTG2-PDX-1-insulin pathway, which was blocked by endogenous BTG2 knockdown using a BTG2 small interfering RNA knockdown system. Finally, we revealed that Ex-4 and GLP-1 significantly elevated insulin secretion via upregulation of the BTG2-PDX-1 axis in pancreatic islets, and this phenomenon was abolished by endogenous BTG2 knockdown. Collectively, our current study provides a novel molecular mechanism by which GLP-1 positively regulates insulin gene expression via BTG2, suggesting that BTG2 has a key function in insulin secretion in pancreatic beta-cells.
Animals
;
Gene Expression Regulation/drug effects
;
Glucagon-Like Peptide 1/*pharmacology
;
Homeodomain Proteins/*genetics/metabolism
;
Humans
;
Immediate-Early Proteins/genetics/*metabolism
;
Insulin/genetics/*secretion
;
Insulin-Secreting Cells/drug effects/*metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Peptides/pharmacology
;
Promoter Regions, Genetic/genetics
;
Protein Binding/drug effects/genetics
;
Rats
;
Trans-Activators/*genetics/metabolism
;
Tumor Suppressor Proteins/genetics/*metabolism
;
Venoms/pharmacology
2.Emodin Isolated from Polygoni cuspidati Radix Inhibits TNF-alpha and IL-6 Release by Blockading NF-kappaB and MAP Kinase Pathways in Mast Cells Stimulated with PMA Plus A23187.
Yue LU ; Yong Tae JEONG ; Xian LI ; Mi Jin KIM ; Pil Hoon PARK ; Seung Lark HWANG ; Jong Keun SON ; Hyeun Wook CHANG
Biomolecules & Therapeutics 2013;21(6):435-441
Emodin, a naturally occurring anthraquinone derivative isolated from Polygoni cuspidati radix, has several beneficial pharmacologic effects, which include anti-cancer, anti-diabetic, and anti-inflammatory activities. In this study, the authors examined the effect of emodin on the production of proinflammatory cytokines, such as, tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, in mouse bone marrow-derived mast cells (BMMCs) stimulated with phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187. To investigate the mechanism responsible for the regulation of pro-inflammatory cytokine production by emodin, the authors assessed its effects on the activations of transcriptional factor nuclear factor-kappaB (NF-kappaB) and mitogen-activated protein kinases (MAPKs). Emodin attenuated the nuclear translocation of (NF)-kappaB p65 and its DNA-binding activity by reducing the phosphorylation and degradation of IkappaBalpha and the phosphorylation of IkappaB kinase B (IKK). Furthermore, emodin dose-dependently attenuated the phosphorylations of MAPKs, such as, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAP kinase, and the stress-activated protein kinases (SAPK)/c-Jun-N-terminal kinase (JNK). Taken together, the findings of this study suggest that the anti-inflammatory effects of emodin on PMA plus A23187-stimulated BMMCs are mediated via the inhibition of NF-kappaB activation and of the MAPK pathway.
Animals
;
Calcimycin*
;
Calcium
;
Cytokines
;
Emodin*
;
I-kappa B Kinase
;
Interleukin-6*
;
Interleukins
;
Mast Cells*
;
Mice
;
Mitogen-Activated Protein Kinases
;
NF-kappa B*
;
p38 Mitogen-Activated Protein Kinases
;
Phosphorylation
;
Phosphotransferases*
;
Protein Kinases
;
Tumor Necrosis Factor-alpha*
3.Antitumor Effects and Immunomodulating Activities of Phellinus linteus Extract in a CT-26 Cell-Injected Colon Cancer Mouse Model.
Byung Keun YANG ; Seung Lark HWANG ; Ik Jin YUN ; Eun Ju DO ; Won Ha LEE ; Young Mi JUNG ; Sung Chang HONG ; Dong Chan PARK
Mycobiology 2009;37(2):128-132
The antitumor effects of Phellinus linteus extract (Keumsa Linteusan) were investigated in a CT-26 cell-injected colon cancer mouse model. When administered orally (250~1,000 mg/kg body weight), Keumsa Linteusan significantly inhibited the growth of solid colon cancer. The highest dose was highly effective, reducing tumor formation by 26% compared with the control group. The anticomplementary activity of Keumsa Linteusan increased in a dose-dependent manner. Lysosomal enzyme activity of macrophages was increased by 2-fold (100 microg/ml) compared with the control group. Keumsa Linteusan can be regarded as a potent enhancer of the innate immune response, and can be considered as a very promising candidate for antitumor action.
Animals
;
Colon
;
Colonic Neoplasms
;
Immunity, Innate
;
Macrophages
;
Mice
;
Polysaccharides