1.Contrast-enhanced voiding urosonography for the diagnosis of vesicoureteral reflux and intrarenal reflux: a comparison of diagnostic performance with fluoroscopic voiding cystourethrography
Daehee KIM ; Young Hun CHOI ; Gayoung CHOI ; Seulbi LEE ; Seunghyun LEE ; Yeon Jin CHO ; Seon Hee LIM ; Hee Gyung KANG ; Jung-Eun CHEON
Ultrasonography 2021;40(4):530-537
Purpose:
This study evaluated the diagnostic performance of contrast-enhanced voiding urosonography (ce-VUS) using a second-generation ultrasound contrast agent for the diagnosis of vesicoureteral reflux (VUR) and intrarenal reflux (IRR), and compared it with that of standard fluoroscopic voiding cystourethrography (VCUG).
Methods:
Thirty-two consecutive children from April to October 2019 were included in this study. ce-VUS and VCUG were performed simultaneously by two operators with intravesical infusion of a mixture of ultrasound contrast medium, iodinated contrast medium and water. Two pediatric radiologists independently reviewed the ce-VUS and VCUG images and reported the presence and degree of VUR (grades I-V), and the presence and type of IRR.
Results:
Twenty-seven of 63 urinary systems showed VUR. Interobserver agreement for VUR grading was very good for both examinations (κ=0.87; 95% confidence interval [CI], 0.82 to 0.92 for ce-VUS and κ=0.92; 95% CI, 0.87 to 0.96 for VCUG). The detection rate of VUR showed no significant difference between the two examinations (P=0.370). Four cases of VUR were missed on ce-VUS, while one case of VUR was missed on VCUG. All four false-negative cases on ce-VUS were grade 1 VUR. The two examinations showed very good agreement regarding VUR grading (κ =0.89; 95% CI, 0.81 to 0.96). IRR was more frequently detected with ce-VUS than with VCUG (10 cases with ce-VUS vs. 3 cases with VCUG, P=0.016).
Conclusion
ce-VUS showed very good agreement with VCUG for detecting grade 2 VUR and above, while grade 1 VUR was sometimes missed with ce-VUS. IRR was more frequently detected with ce-VUS than with VCUG.
2.Draft Genome Sequence of Xylaria grammica EL000614, a Strain Producing Grammicin, a Potent Nematicidal Compound
Sook-Young PARK ; Jongbum JEON ; Jung A KIM ; Mi Jin JEON ; Nan Hee YU ; Seulbi KIM ; Ae Ran PARK ; Jin-Cheol KIM ; Yerim LEE ; Youngmin KIM ; Eu Ddeum CHOI ; Min-Hye JEONG ; Yong-Hwan LEE ; Soonok KIM
Mycobiology 2021;49(3):294-296
An endolichenic fungus,Xylaria grammica strain EL000614, showed strong nematicidal effects against plant pathogenic nematode, Meloidogyne incognita by producing grammicin. We report genome assembly of X. grammica EL000614 comprised of 25 scaffolds with a total length of 54.73 Mb, N50 of 4.60 Mb, and 99.8% of BUSCO completeness. GC contents of this genome were 44.02%. Gene families associated with biosynthesis of secondary metabolites or regulatory proteins were identified out of 13,730 gene models predicted.
3.Draft Genome Sequence of Xylaria grammica EL000614, a Strain Producing Grammicin, a Potent Nematicidal Compound
Sook-Young PARK ; Jongbum JEON ; Jung A KIM ; Mi Jin JEON ; Nan Hee YU ; Seulbi KIM ; Ae Ran PARK ; Jin-Cheol KIM ; Yerim LEE ; Youngmin KIM ; Eu Ddeum CHOI ; Min-Hye JEONG ; Yong-Hwan LEE ; Soonok KIM
Mycobiology 2021;49(3):294-296
An endolichenic fungus, Xylaria grammica strain EL000614, showed strong nematicidal effects against plant pathogenic nematode, Meloidogyne incognita by producing grammicin.We report genome assembly of X. grammica EL000614 comprised of 25 scaffolds with a total length of 54.73 Mb, N50 of 4.60 Mb, and 99.8% of BUSCO completeness. GC contents of this genome were 44.02%. Gene families associated with biosynthesis of secondary metabolites or regulatory proteins were identified out of 13,730 gene models predicted.
4.Draft Genome Sequence of Xylaria grammica EL000614, a Strain Producing Grammicin, a Potent Nematicidal Compound
Sook-Young PARK ; Jongbum JEON ; Jung A KIM ; Mi Jin JEON ; Nan Hee YU ; Seulbi KIM ; Ae Ran PARK ; Jin-Cheol KIM ; Yerim LEE ; Youngmin KIM ; Eu Ddeum CHOI ; Min-Hye JEONG ; Yong-Hwan LEE ; Soonok KIM
Mycobiology 2021;49(3):294-296
An endolichenic fungus,Xylaria grammica strain EL000614, showed strong nematicidal effects against plant pathogenic nematode, Meloidogyne incognita by producing grammicin. We report genome assembly of X. grammica EL000614 comprised of 25 scaffolds with a total length of 54.73 Mb, N50 of 4.60 Mb, and 99.8% of BUSCO completeness. GC contents of this genome were 44.02%. Gene families associated with biosynthesis of secondary metabolites or regulatory proteins were identified out of 13,730 gene models predicted.
5.Draft Genome Sequence of Xylaria grammica EL000614, a Strain Producing Grammicin, a Potent Nematicidal Compound
Sook-Young PARK ; Jongbum JEON ; Jung A KIM ; Mi Jin JEON ; Nan Hee YU ; Seulbi KIM ; Ae Ran PARK ; Jin-Cheol KIM ; Yerim LEE ; Youngmin KIM ; Eu Ddeum CHOI ; Min-Hye JEONG ; Yong-Hwan LEE ; Soonok KIM
Mycobiology 2021;49(3):294-296
An endolichenic fungus, Xylaria grammica strain EL000614, showed strong nematicidal effects against plant pathogenic nematode, Meloidogyne incognita by producing grammicin.We report genome assembly of X. grammica EL000614 comprised of 25 scaffolds with a total length of 54.73 Mb, N50 of 4.60 Mb, and 99.8% of BUSCO completeness. GC contents of this genome were 44.02%. Gene families associated with biosynthesis of secondary metabolites or regulatory proteins were identified out of 13,730 gene models predicted.