1.The clinical role of interferon alpha in Philadelphia-negative myeloproliferative neoplasms
Blood Research 2021;56(S1):S44-S50
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell malignancies.Chronic inflammation and a dysregulated immune system are central to the pathogenesis and progression of MPNs. Interferon alpha (IFNα) was first used for the treatment of MPNs approximately 40 years ago. It has significant antiviral effects and plays a role in anti-proliferative, pro-apoptotic, and immunomodulatory responses. IFNα is an effective drug that can simultaneously induce significant rates of clinical, hematological, molecular, and histopathological responses, suggesting that the disease may be cured in some patients. However, its frequent dosage and toxicity profile are major barriers to its widespread use. Pegylated IFNα (peg-IFNα), and more recently, ropeginterferon alpha-2b (ropeg-IFNα-2b), are expected to overcome these drawbacks. The objective of this article is to discuss the clinical role of IFNα in Philadelphia-negative MPNs through a review of recent studies. In particular, it is expected that new IFNs, such as peg-IFNα and ropeg-IFNα-2b, with lower rates of discontinuation due to fewer adverse effects, will play important clinical roles.
2.The clinical role of interferon alpha in Philadelphia-negative myeloproliferative neoplasms
Blood Research 2021;56(S1):S44-S50
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell malignancies.Chronic inflammation and a dysregulated immune system are central to the pathogenesis and progression of MPNs. Interferon alpha (IFNα) was first used for the treatment of MPNs approximately 40 years ago. It has significant antiviral effects and plays a role in anti-proliferative, pro-apoptotic, and immunomodulatory responses. IFNα is an effective drug that can simultaneously induce significant rates of clinical, hematological, molecular, and histopathological responses, suggesting that the disease may be cured in some patients. However, its frequent dosage and toxicity profile are major barriers to its widespread use. Pegylated IFNα (peg-IFNα), and more recently, ropeginterferon alpha-2b (ropeg-IFNα-2b), are expected to overcome these drawbacks. The objective of this article is to discuss the clinical role of IFNα in Philadelphia-negative MPNs through a review of recent studies. In particular, it is expected that new IFNs, such as peg-IFNα and ropeg-IFNα-2b, with lower rates of discontinuation due to fewer adverse effects, will play important clinical roles.
3.Novel therapeutic strategies for essential thrombocythemia/polycythemia vera
Blood Research 2023;58(S1):83-89
Myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells;these include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). MPNs are inflammatory cancers, wherein the malignant clone generates cytokines that sustain the inflammatory drive in a self-perpetuating vicious cycle. The course of MPNs follows a biological continuum, that is, from early cancer stages (ET/PV) to advanced myelofibrosis as well as impending leukemic transformation. MPN-related symptoms, e.g., fatigue, general weakness, and itching, are caused by inflammatory cytokines. Thrombosis and bleeding are also exacerbated by inflammatory cytokines in patients with MPN. Until recently, the primary objective of ET and PV therapy was to increase survival rates by preventing thrombosis. However, several medications have recently demonstrated the ability to modify the course of the disease; symptom relief is expected for most patients. In addition, there is increasing interest in the active treatment of patients at low risk with PV and ET. This review focuses on the ET/PV treatment strategies as well as novel treatment options for clinical development.
4.Long-acting interferon: pioneering disease modification of myeloproliferative neoplasms
The Korean Journal of Internal Medicine 2023;38(6):810-817
Myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells. The malignant clones produce cytokines that drive self-perpetuating inflammatory responses and tend to transform into more aggressive clones, leading to disease progression. The progression of MPNs follows a biological sequence from the early phases of malignancy, polycythemia vera, and essential thrombocythemia, to advanced myelofibrosis and leukemic transformation. To date, the treatment of MPNs has focused on preventing thrombosis by decreasing blood cell counts and relieving disease-related symptoms. However, interferon (IFN) has been used to treat MPNs because of its ability to attack cancer cells directly and modulate the immune system. IFN also has the potential to modulate diseases by inhibiting JAK2 mutations, and recent studies have demonstrated clinical and molecular improvements. Long-acting IFN is administered less frequently and has fewer adverse effects than conventional IFN. The current state of research on long-acting IFN in patients with MPNs is discussed, along with future directions.
9.Asymptomatic huge spleen mass
Sanghyeok HAN ; Kyeongmin KIM ; In Ho CHOI ; Jong-Ho WON ; Seug Yun YOON
The Korean Journal of Internal Medicine 2023;38(4):576-577