1.Sesquiterpenoids from resin of Commiphora myrrha.
Hao HUANG ; Ran WANG ; Ya-Zhu YANG ; Jiao-Jiao YIN ; Yue LIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Jun LI
China Journal of Chinese Materia Medica 2025;50(3):702-707
The chemical constituents of Commiphora myrrha was investigated by column chromatography on silica gel, ODS, Sephadex LH-20, and semi-preparative HPLC. Their structures were elucidated by comprehensive spectroscopic methods including UV, IR, MS, NMR, as well as ECD calculation. Seven compounds were isolated from the dichloromethane-soluble fraction of C. myrrha and their structures were identified as(1S,2R,4S,5R,8S)-guaiane-2-hydroxy-7(11),10(15)-dien-6-oxo-12,8-olide(1), commipholide E(2), myrrhterpenoid H(3), myrrhterpenoid I(4), myrrhterpenoid E(5), 2α-methoxy-8α-hydroxy-6-oxogermacra-1(10),7(11)-dien-8,12-olide(6), 8,12-epoxy-1α,9α-hydroxy-eudesma-7,11-diene-6-dione(7). Compound 1 was a new compound and named myrrhterpenoid P. Compound 7 was isolated from Commiphora genus for the first time. Compounds 2, 5, and 6 significantly inhibited nitric oxide(NO) production in LPS-stimulated RAW264.7 cells, with IC_(50) values of(49.67±4.16),(40.80±1.27),(47.22±0.87) μmol·L~(-1), respectively [indomethacin as the positive control, with IC_(50) value of(63.92±2.60) μmol·L~(-1)].
Commiphora/chemistry*
;
Animals
;
Mice
;
Resins, Plant/chemistry*
;
Sesquiterpenes/isolation & purification*
;
Molecular Structure
;
Nitric Oxide
;
Macrophages/metabolism*
;
RAW 264.7 Cells
;
Drugs, Chinese Herbal/pharmacology*
2.A new sesquiterpenoid from fresh herb of Centipeda minima.
Qi-Ji LI ; Liu YANG ; Li WANG ; Lang ZHOU ; Yan YANG ; Juan YANG
China Journal of Chinese Materia Medica 2025;50(7):1803-1809
Eleven sesquiterpenoids were isolated from the petroleum ether and ethyl acetate extracted fraction of 95% ethanol extract of fresh Centipeda minima by using modern chromatographic separation techniques such as silica gel, MCI, gel, and semi-preparative liquid chromatography. Their structures were identified using spectroscopy and nuclear magnetic resonance(NMR) calculation as minimin A(1), brevilin A(2), minimolide L(3), minimolide A(4), minimolide B(5), arnicolide D(6), microhelenin C(7), 2β-hydroxyl-2,3-dihydrogen-6-O-angeloylplenolin(8), 11α,13-dihydroarnifolin(9),(1S,2R,5R,6S,7S,8S,10R)-6-hydroxy-2-ethoxy-4-oxopseudoguai-11(13)-en-12,8-olide(10), and pulchellin-2-O-isovalerate(11), among which compound 1 was a new compound, and compounds 9-11 were isolated from Centipeda for the first time. The evaluation results of in vitro anti-inflammatory activity showed that compounds 1-11 possessed significant anti-inflammatory activity, with IC_(50) values ranging from(0.13±0.03) to(13.11±0.17) μmol·L~(-1).
Sesquiterpenes/pharmacology*
;
Animals
;
Asteraceae/chemistry*
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Molecular Structure
;
Magnetic Resonance Spectroscopy
;
Macrophages/immunology*
3.One new sesquiterpene from Aquilariae Lignum Resinatum.
Jia-Min CAO ; Bin HU ; De-Shang MAI ; Cai-Xin CHEN ; Zhong-Xiang ZHAO ; Wei-Qun YANG
China Journal of Chinese Materia Medica 2025;50(8):2167-2172
The chemical constituents of sesquiterpenes from 95% ethanol extract of Aquilariae Lignum Resinatum were isolated and purified by various column chromatography techniques, including silica gel, Sephadex LH-20, octadecylsilyl(ODS), and semi-preparative high performance liquid chromatography(HPLC). Their planar structures and absolute configurations were elucidated by ultraviolet(UV) spectrometry, infrared(IR) spectroscopy, mass spectrometry(MS), nuclear magnetic resonance(NMR), electronic circular dichroism(ECD), and other techniques. Eight sesquiterpenoids were isolated and identified as(+)-(7R,10R)-selina-4,11-dien-12-dimethoxy-15-al(1),(+)-(7R,10R)-selina-4,11-diene-12,15-dial(2), agalleudesmanol B(3), aquisinenoid C(4), 12,15-dioxo-α-selinen(5), agarospiranic aldehyde B(6), neopetasane(7), and eremophila-7(11),9-dien-8-one(8). Compound 1 was a new compound, and it was the first time to find a dimethoxy substitution on the side chain of eudesmane-type sesquiterpene skeleton.
Sesquiterpenes/isolation & purification*
;
Thymelaeaceae/chemistry*
;
Molecular Structure
;
Drugs, Chinese Herbal/isolation & purification*
;
Magnetic Resonance Spectroscopy
4.Identification of terpenoid synthases family in Perilla frutescens and functional analysis of germacrene D synthase.
Pei-Na ZHOU ; Zai-Biao ZHU ; Lei XIONG ; Ying ZHANG ; Peng CHEN ; Huang-Jin TONG ; Cheng-Hao FEI
China Journal of Chinese Materia Medica 2025;50(10):2658-2673
Based on whole-genome identification of the TPS gene family in Perilla frutescens and screening, cloning, bioinformatics, and expression analysis of the synthetic enzyme for the insect-resistant component germacrene D, this study lays the foundation for understanding the biological function of the TPS gene family and the insect resistance mechanism in P. frutescens. This study used bioinformatics tools to identify the TPS gene family of P. frutescens based on its whole genome and predicted the physicochemical properties, systematic classification, and promoter cis-elements of the proteins. The relative content of germacrene D was detected in both normal and insect-infested leaves of P. frutescens, and the germacrene D synthase was screened and isolated. Gene cloning, bioinformatics analysis, and expression profiling were then performed. The results showed that a total of 99 TPS genes were identified in the genome, which were classified into the TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g subfamilies. Conserved motif analysis showed that the TPS in P. frutescens has conserved structural characteristics within the same subfamily. Promoter cis-element analysis predicted the presence of light-responsive elements, multiple hormone-responsive elements, and stress-responsive elements in the TPS family of P. frutescens. Transcriptome data revealed that most of the TPS genes in P. frutescens were highly expressed in the leaves. GC-MS analysis showed that the relative content of germacrene D significantly increased in insect-damaged leaves, suggesting that it may act as an insect-resistant component. The germacrene D synthase gene was screened through homologous protein binding gene expression and was found to belong to the TPS-a subfamily, encoding a 64.89 kDa protein. This protein was hydrophilic, lacked a transmembrane structure and signal peptide, and was predominantly expressed in leaves, with significantly higher expression in insect-damaged leaves compared to normal leaves. In vitro expression results showed that germacrene D synthase tended to form inclusion bodies. Molecular docking showed that farnesyl pyrophosphate(FPP) fell into the active pocket of the protein and interacted strongly with six active sites. This study provides a foundation for further research on the biological functions of the TPS gene family in P. frutescens and the molecular mechanisms underlying its insect resistance.
Perilla frutescens/chemistry*
;
Plant Proteins/chemistry*
;
Multigene Family
;
Sesquiterpenes, Germacrane/metabolism*
;
Alkyl and Aryl Transferases/chemistry*
;
Phylogeny
;
Gene Expression Regulation, Plant
5.Two new sesquiterpenoids from Wenyujin Rhizoma Concisum.
Yu LI ; Min CHEN ; Cheng ZHU ; Ci-Mei WU ; Chao-Jie WANG ; Jian-Yong DONG
China Journal of Chinese Materia Medica 2025;50(10):2704-2710
This study explored the active ingredients for anti-angiogenesis in Wenyujin Rhizoma Concisum. Ten sesquiterpenoids were isolated from Wenyujin Rhizoma Concisum by silica gel column chromatography, thin layer chromatography, and high performance liquid chromatography. According to the results of multiple spectroscopic methods and circular dichroism, they were identified as wenyujinlactam A(1),(4S,7S)11-hydroxycurdione(2), 8,9-seco-4β-hydroxy-1α,5βH-7(11)-guaen-8,10-olide(3), curcumadione(4), phaeocaulisin E(5), procurcumadiol(6), zedouronediol(7), epiprocurcumenol(8), gajutsulactone A(9), and(7Z)-1β,4α-dihydroxy-5α,8β(H)-eudesm-7(11)-en-8,12-olide(10). Compounds 1 and 2 were new sesquiterpenoids. Compounds 1, 6, 8, and 10 can inhibit human umbilical vein endothelial cells(HUVEC) proliferation with IC_(50) values of 38.83, 45.19, 32.12, and 37.80 μmol·L~(-1), respectively. Compounds 1 and 10 can inhibit HUVEC migration with IC_(50) values of 29.70 and 36.48 μmol·L~(-1), respectively.
Sesquiterpenes/isolation & purification*
;
Humans
;
Drugs, Chinese Herbal/isolation & purification*
;
Rhizome/chemistry*
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Molecular Structure
;
Cell Proliferation/drug effects*
6.Ustusolate E and 11α-Hydroxy-Ustusolate E induce apoptosis in cancer cell lines by regulating the PI3K/AKT/mTOR and p-53 pathways.
Mewlude REHMUTULLA ; Sitian ZHANG ; Jie YIN ; Jianzheng HUANG ; Yang XIAO ; Zhengxi HU ; Qingyi TONG ; Yonghui ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):346-353
Cancer represents a significant disease that profoundly impacts human health and longevity. Projections indicate a 47% increase in the global cancer burden by 2040 compared to 2020, accompanied by a further rise in the associated economic burden. Consequently, there is an urgent need to discover and develop new alternative drugs to mitigate the global impact of cancer. Natural products (NPs) play a crucial role in the identification and development of anticancer therapeutics. This study identified ustusolate E (UE) and its analog 11α-hydroxy-ustusolate E (HUE) from strain Aspergilluscalidoustus TJ403-EL05, and examined their antitumor activities and mechanisms of action. The findings demonstrate that both compounds significantly inhibited the proliferation and colony formation of AGS (human gastric cancer cells) and 786-O (human renal clear cell carcinoma cells), induced irreversible DNA damage, blocked the cell cycle at the G2/M phase, and further induced apoptosis in tumor cells. To the best of the authors' knowledge, this is the first report on the anticancer effects of UE and HUE and their underlying mechanisms. The present study suggests that HUE and UE could serve as lead compounds for the development of novel anticancer drugs.
Humans
;
Apoptosis/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Cell Line, Tumor
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Tumor Suppressor Protein p53/genetics*
;
Cell Proliferation/drug effects*
;
Antineoplastic Agents/pharmacology*
;
Sesquiterpenes/pharmacology*
;
Aspergillus/chemistry*
7.New acylphloroglucinol-sesquiterpenoid adducts with antiviral activities from Dryopteris atrata.
Jihui ZHANG ; Jinghao WANG ; Wei TANG ; Xi SHEN ; Jinlin CHEN ; Huilin OU ; Qianyi SITU ; Yaolan LI ; Guocai WANG ; Yubo ZHANG ; Nenghua CHEN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):377-384
Seven novel acylphloroglucinol-sesquiterpenoid adducts, designated as dryatraols J-P (1-7), were isolated from the rhizomes of Dryopteris atrata (Wall. ex Kunze) Ching. The structures, including absolute configurations, were elucidated using comprehensive spectroscopic data, calculated 13C Nuclear Magnetic Resonance-Diastereotopic Probability Assignment Plus (13C NMR-DP4+) probability analysis, and ECD calculations. These structures represent a rare subclass of carbon skeleton of acylphloroglucinol-sesquiterpenoid adducts with a furan ring connecting the acylphloroglucinol and sesquiterpenoid moieties. Notably, compounds 1-6 are the first reported examples of acylphloroglucinol-sesquiterpenoid adducts with dimeric acylphloroglucinol incorporated into the aristolane- or rulepidanol-type sesquiterpene, while compound 7 features a hydroxylated monomeric acylphloroglucinol motif. A preliminary evaluation of their antiviral activities revealed that compounds 1-6 exhibited more potent activities against respiratory syncytial virus (RSV) with IC50 values ranging from 0.75 to 3.12 μmol·L-1 compared to the positive control (ribavirin).
Antiviral Agents/isolation & purification*
;
Phloroglucinol/isolation & purification*
;
Sesquiterpenes/isolation & purification*
;
Molecular Structure
;
Dryopteris/chemistry*
;
Respiratory Syncytial Viruses/drug effects*
;
Humans
;
Rhizome/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
8.Structurally diverse sesquiterpenoids with anti-MDR cancer activity from Penicillium roqueforti.
Shuyuan MO ; Nanjin DING ; Zhihong HUANG ; Jun YAO ; Weiguang SUN ; Jianping WANG ; Yonghui ZHANG ; Zhengxi HU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):504-512
Five novel nor-eremophilane-type sesquiterpenoids, peniroqueforins E-H and J (1-4 and 7), two new eremophilane-type sesquiterpenoids, peniroqueforins I and K (5 and 8), and a new eudesmane-type sesquiterpenoid, peniroqueforin L (9), along with four known compounds (6 and 10-12), were isolated and characterized from fungus Penicillium roqueforti (P. roqueforti). The structures and absolute configurations of these compounds were determined through comprehensive spectroscopic analyses, electronic circular dichroism (ECD) data analyses, and single-crystal X-ray diffraction methods. The anti-multi-drug resistance (MDR) cancer activity of these compounds was evaluated using SW620/Ad300 cells. Notably, the half maximal inhibitory concentration (IC50) value of paclitaxel (PTX) combined with 1 in SW620/Ad300 cells was 50.36 nmol·L-1, which was 65-fold more potent than PTX alone (IC50 3.26 μmol·L-1). Subsequent molecular docking studies revealed an affinity between compound 1 and P-glycoprotein (P-gp), suggesting that this nor-eremophilane-type sesquiterpenoid (1) could serve as a potential lead for MDR reversal in cancer cells through P-gp inhibition.
Penicillium/chemistry*
;
Humans
;
Sesquiterpenes/isolation & purification*
;
Cell Line, Tumor
;
Molecular Structure
;
Drug Resistance, Neoplasm/drug effects*
;
Antineoplastic Agents/pharmacology*
;
Drug Resistance, Multiple/drug effects*
;
Molecular Docking Simulation
9.Identification and biomimetic synthesis of iphionanes and cyperanes from Artemisia hedinii and their anti-hepatic fibrosis activity.
Xiaofei LIU ; Xing WANG ; Chunping TANG ; Changqiang KE ; Bintao HU ; Sheng YAO ; Yang YE
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):871-880
Two novel skeleton sesquiterpenoids (1 and 6), along with four new iphionane-type sesquiterpenes (2-5) and six new cyperane-type sesquiterpenes (7-11), were isolated from the whole plant of Artemisia hedinii (A. hedinii). The two novel skeleton compounds (1 and 6) were derived from the decarbonization of iphionane and cyperane-type sesquiterpenes, respectively. Their structures were elucidated through a comprehensive analysis of spectroscopic data, including high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and 1D and 2D nuclear magnetic resonance (NMR) spectra. The absolute configurations were determined using electronic circular dichroism (ECD) spectra, single-crystal X-ray crystallographic analyses, time-dependent density functional theory (TDDFT) ECD calculation, density functional theory (DFT) NMR calculations, and biomimetic syntheses. The biomimetic syntheses of the two novel skeletons (1 and 6) were inspired by potential biogenetic pathways, utilizing a predominant eudesmane-type sesquiterpene (A) in A. hedinii as the substrate. All compounds were evaluated in LX-2 cells for their anti-hepatic fibrosis activity. Compounds 2, 8, and 10 exhibited significant activity in downregulating the expression of α-smooth muscle actin (α-SMA), a protein involved in hepatic fibrosis.
Artemisia/chemistry*
;
Sesquiterpenes/chemical synthesis*
;
Molecular Structure
;
Humans
;
Liver Cirrhosis/genetics*
;
Biomimetics
;
Plant Extracts/pharmacology*
10.Lirispirolides A-L, a new class of sesquiterpene-monoterpene heterodimers with anti-neuroinflammatory activity from the rare medicinal plant Liriodendron chinense.
Yuhang HE ; Kexin LI ; Yufei WU ; Zexin JIN ; Jinfeng HU ; Yicheng MAO ; Juan XIONG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):938-950
Lirispirolides A-L (1-12), twelve novel sesquiterpene-monoterpene heterodimers featuring distinctive carbon skeletons, were isolated from the branches and leaves of Chinese tulip tree [Liriodendron chinense (L. chinense)], a rare medicinal and ornamental plant endemic to China. The structural elucidation was accomplished through comprehensive spectroscopic analyses, quantum-chemical calculations, and X-ray crystallography. These heterodimers exhibit a characteristic 2-oxaspiro[4.5]decan-1-one structural motif, biosynthetically formed through intermolecular [4 + 2]-cycloaddition between a germacrane-type sesquiterpene and an ocimene-type monoterpene. The majority of the isolated compounds demonstrated significant anti-neuroinflammatory effects in lipopolysaccharide (LPS)-induced BV-2 microglial cells by reducing the production of pro-inflammatory mediators, specifically tumor necrosis factor-α (TNF-α) and nitric oxide (NO). Further investigation revealed that the lirispirolides' inhibition of NO release correlated with decreased messenger ribonucleic acid (mRNA) expression of inducible NO synthase (iNOS).
Sesquiterpenes/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Animals
;
Mice
;
Tumor Necrosis Factor-alpha/genetics*
;
Nitric Oxide/immunology*
;
Microglia/immunology*
;
Molecular Structure
;
Liriodendron/chemistry*
;
Monoterpenes/isolation & purification*
;
Plants, Medicinal/chemistry*
;
Cell Line
;
Lipopolysaccharides
;
Nitric Oxide Synthase Type II/immunology*
;
Plant Extracts/pharmacology*
;
China

Result Analysis
Print
Save
E-mail