1.Mechanism of Astragali Radix-Curcumae Rhizoma in treating gastric cancer based on network pharmacology and experimental verification.
Xi-Ying TAN ; Jing TAO ; Yu ZHANG ; Ru-Xin GU
China Journal of Chinese Materia Medica 2023;48(18):5056-5067
This study aims to investigate the mechanism of Astragali Radix-Curcumae Rhizoma(HQEZ) in the treatment of gastric cancer based on network pharmacology. Further, the SGC7901 cell model of gastric cancer was employed to validate the efficacy and key targets of the herb pair. Firstly, the CCK-8 assay was employed to evaluate the direct effect of HQEZ on the proliferation of gastric cancer SGC7901 cells. Then, network pharmacology methods were employed to investigate the active ingredients, key targets, and key signaling pathways involved in the treatment of gastric cancer with HQEZ. The results showed that HQEZ contained 18 potential active ingredients, such as quercetin, naringenin, and curcumin. The results of gene ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment suggested that the main targets of HQEZ in treating gastric cancer were involved in the regulation of protein serine/threonine kinase activity, activation of mitogen-activated protein kinase(MAPK) activity, cysteine-type endopeptidase activity, and negative regulation of protein serine/threonine kinase activity. The hypoxia-inducible factor-1(HIF-1) signaling pathway, ATP-binding cassette(ABC) transporters, cytochrome P450-mediated metabolism of xenobiotics, p53 signaling pathway, and cell apoptosis were key signaling pathways of HQEZ in treating gastric cancer. The cell experiments demonstrated that HQEZ significantly downregulated the expression of ATP-binding cassette subfamily B member 1(ABCB1), epidermal growth factor receptor(EGFR), phosphorylated serine/threonine kinase(p-AKT), hypoxia inducible factor 1 subunit alpha(HIF1A), B-cell lymphoma 2(BCL2), breast cancer susceptibility protein 1(BRCA1), DNA polymerase theta(POLH), ribonucleotide reductase M1(RRM1), and excision repair cross-complementation group 1(ERCC1), and upregulated the expression of tumor protein P53(TP53) and cysteinyl aspartate-specific proteinase(CAPS3). Finally, a multivariate COX regression model was adopted to study the relationship between gene expression and clinical information data of gastric cancer patients in the TCGA database, which demonstrated that the key targets of HQEZ were associated with the poor prognosis in gastric cancer patients. Further feature selection using the LASSO algorithm showed that EGFR, HIF1A, TP53, POLH, RRM1, and ERCC1 were closely associated with the survival of gastric can-cer patients. In conclusion, HQEZ regulates the expression of genes involved in DNA repair, survival, and apoptosis in gastric cancer cells via multiple targets and pathways, assisting the treatment of gastric cancer.
Humans
;
Stomach Neoplasms/genetics*
;
Tumor Suppressor Protein p53
;
Network Pharmacology
;
ErbB Receptors
;
Protein Serine-Threonine Kinases
;
Serine
;
Adenosine Triphosphate
;
Molecular Docking Simulation
;
Drugs, Chinese Herbal/pharmacology*
2.Pharmacological mechanisms and effects of amino acid nutrients.
Chinese Journal of Gastrointestinal Surgery 2013;16(11):1123-1126
Common amino acid nutrients mainly contain glutamine, arginine, leucine, methionine and cysteine, which are not only the components participating in body protein synthesis, but also regulate the patients' immune system and metabolism. Glutamine can improve the intestinal barrier, reduce inflammatory reaction, and promote immunity recovery, but the clinical effects of different patients with different diseases are still lack of clear conclusions. The catabolism of arginine can produce NO, promoting the inflammatory reaction, and can also generate ornithine, alleviating inflammatory reaction and promoting wound healing. Two competing ways coexist, but the specific effects on different diseases have no clear conclusions yet. Leucine promotes muscle protein synthesis mainly through mTOR pathway, however, the influence on metabolism is still debating. Sulfur-containing amino acids methionine and cysteine can promote the synthesis of connective tissue and collagen conducive to wound healing, and their beneficial effects on lipid metabolism are of value. The purpose of this review is to cover potential beneficial physiological mechanisms of amino acid nutrients, to describe their results of clinical applications and to evaluate the interactions among individual nutrients or between individual nutrients and body.
Amino Acids
;
pharmacology
;
Humans
;
Muscle Proteins
;
Muscles
;
Signal Transduction
;
drug effects
;
TOR Serine-Threonine Kinases
3.Protective effects of mitochondrial ATP-sensitive potassium channel on A549 cell apoptosis induced by hyperoxia.
Xin-Yan ZOU ; Wen-Bin DONG ; Dan ZOU ; Qing-Ping LI ; Xiao-Ping LEI ; Xue-Song ZHAI ; Feng CHEN
Chinese Journal of Contemporary Pediatrics 2011;13(6):514-517
OBJECTIVETo explore the protective effects of mitochondrial ATP-sensitive potassium channel opener diazoxide on hyperoxia-induced apoptosis of type II alveolar epithelial cells (A549 cells) and possible mechanisms.
METHODSA549 cells were cultured in vitro and divided randomly into control, hyperoxia and diazoxide group. The hyperoxia group was exposed to a mixture of O2 (900 mL/L) and CO2 (50 mL/L) for 10 minutes, then cultured in a closed environment. The diazoxide group was pretreated with diazoxide of 100 μmol/L for 24 hrs before hyperxia induction. The cells were collected 12, 24 and 48 hrs after culture. The morphologic changes of A549 cells were observed under an inverted microscope. A549 cell apoptosis was detected by flow cytometry. The expression of Omi/HtrA2 in the endochylema of A549 cells was determined by immunohistochemistry.
RESULTSA549 cells were damaged and the changes in morphology of the cells were serious in the hyperoxia group. The apoptosis rate of A549 cells and the expression of Omi/HtrA2 in the endochylema increased in the hyperoxia group compared with the control group (P<0.05). The growth and the morphology of A549 cells were greatly improved and the cell injuries were obviously alleviated in the diazoxide group. The expression of Omi/HtrA2 in the endochylema and the apoptosis rate of A549 cells were significantly reduced in the diazoxide group compared with the hyperoxia group (P<0.05).
CONCLUSIONSDiazoxide as an opener of mitoKATP channel can reduce the expression of Omi/HtrA2 and the apoptosis rate of A549 cells, thus relieves the injury of A549 cells induced by hyperoxia.
Apoptosis ; Cells, Cultured ; Cytoprotection ; Diazoxide ; pharmacology ; High-Temperature Requirement A Serine Peptidase 2 ; Humans ; Hyperoxia ; complications ; Lung ; pathology ; Mitochondrial Proteins ; analysis ; Potassium Channels ; physiology ; Serine Endopeptidases ; analysis
4.Metabolic flux analysis of L-serine synthesis by Corynebacterium glutamicum SYPS-062.
Xiaomei ZHANG ; Wenfang DOU ; Hongyu XU ; Zhenghong XU
Chinese Journal of Biotechnology 2010;26(10):1363-1371
Corynebacterium glutamicum SYPS-062 was an L-serine producing strain stored at our lab and could produce L-serine directly from sugar. We studied the effects of cofactors in one carbon unit metabolism-folate and VB12 on the cell growth, sucrose consumption and L-serine production by SYPS-062. In the same time, the metabolic flux distribution was determined in different conditions. The supplementation of folate or VB12 enhanced the cell growth, energy synthesis, and finally increased the flux of pentose phosphate pathway (HMP), whereas the carbon flux to L-serine was decreased. The addition of VB12 not only increased the ratio of L-serine synthesis pathway on G3P joint, but also caused the insufficiency of tricarboxylic acid cycle (TCA) flux, which needed more anaplerotic reaction flux to replenish TCA cycle, that was an important limiting factor for the further increasing of the L-serine productivity.
Citric Acid Cycle
;
physiology
;
Corynebacterium glutamicum
;
metabolism
;
Fermentation
;
Folic Acid
;
pharmacology
;
Serine
;
biosynthesis
;
Vitamin B 12
;
pharmacology
5.Correlation between mTOR signaling transduction pathway and arsenic trioxide response.
Journal of Experimental Hematology 2010;18(1):54-56
This study was aimed to investigate the correlation between mTOR signaling transduction pathway and arsenic trioxide (ATO) effect. The expressions of pmTOR, pAKT and pP70S6K in K562/DNR treated with ATO for different time were detected by Western blot. The apoptosis rate of K562/DNR treated by ATO combined with LY294002 or rapamycin for 120 hours was assayed by flow cytometry. The results showed that the expression of pmTOR in K562/DNR cells treated with ATO for 60 minutes or 120 minutes was higher than that in the control group (p < 0.01); the expressions of pAKT in the cells treated with ATO for 30 minutes or 60 minutes were higher than that in the control group (p < 0.01); the expression of pP70S6K in the cells treated with ATO for 60 minutes was higher than that in the control group (p < 0.01). The apoptosis rate of K562/DNR cells treated with combination of ATO and LY294002 or rapamycin were higher than that in the control group. It is concluded that the mTOR signaling pathway in K562/DNR cells is activated by a certain concentration of ATO, and mTOR signaling pathway inhibitors enhance ATO to trigger apoptosis in K562/DNR cells.
Apoptosis
;
drug effects
;
Arsenicals
;
pharmacology
;
Humans
;
K562 Cells
;
Oxides
;
pharmacology
;
Signal Transduction
;
TOR Serine-Threonine Kinases
;
metabolism
6.Heterozygous genotypes and molecular characteristics of Organophosphorus resistance associated esterase B2 genes of Culex pipiens complex.
Yu KOU ; Xin-fen YU ; Rong YE ; Jin-cao PAN ; Feng CUI ; Chuan-ling QIAO
Chinese Journal of Preventive Medicine 2009;43(5):390-394
OBJECTIVETo investigate the heterozygous genotype and molecular characteristics of Organophosphorus resistance associated with heterozygous Estbeta2 of esterase B2 gene from natural population of Culex pipiens complex.
METHODSGenomic DNA was extracted from natural populations of Culex pipiens complex in Hangzhou. The PCR-restriction fragment length polymorphism (PCR-RFLP) assay was applied to type the resistance associated esterase gene. Estbeta2 of esterase B2 gene was identified by PCR-RFLP, and the genotyping for heterozygous Estbeta2 was carried out after restriction enzyme digesting by Bfm I endonuclease.
RESULTSThe DNA was isolated from 207 Culex pipiens respectively, while 156 PCR samples showed positive and the positive rate was 75.36% (156/207). The PCR-RFLP assay of esterase B2 gene revealed that the Estbeta2 was accounted about 28.20% (44/156) in 156 positive samples. There were two genotypes identified, namely homozygous Estbeta2 (90.90%, 30/33) and heterozygous Estbeta2 (9%, 3/33), heterozygous Estbeta2 was in existence of a hybrid form as which combined with Estbeta2 and a subtype (Estbeta2/Estbeta2(1)).
CONCLUSIONHeterozygous Estbeta2 of Organophosphorus resistance associated with esterase genotype was determined in natural population of Culex pipiens, and a genotyping method was established.
Animals ; Culex ; enzymology ; genetics ; Genes, Insect ; Genotype ; Heterozygote ; Insecticide Resistance ; genetics ; Insecticides ; pharmacology ; Organophosphorus Compounds ; pharmacology ; Phenotype ; Serine Endopeptidases ; genetics
7.Curcumin alleviates the manganese-induced neurotoxicity by promoting autophagy in rat models of manganism.
Li Ye LAI ; Chang Song DOU ; Cui Na ZHI ; Jie CHEN ; Xue MA ; Peng ZHAO ; Bi Yun YAO
Journal of Peking University(Health Sciences) 2022;54(3):400-411
OBJECTIVE:
To investigate the protective effects of curcumin(CUR) and its mechanism on a rat model of neurotoxicity induced by manganese chloride (MnCl2), which mimics mangnism.
METHODS:
Sixty male SD rats were randomly divided into 5 groups, with 12 rats in each group. Control group received 0.9% saline solution intraperitoneally (ip) plus double distilled water (dd) H2O intragastrically (ig), MnCl2 group received 15 mg/kg MnCl2(Mn2+ 6.48 mg/kg) intraperitoneally plus dd H2O intragastrically, CUR group received 0.9% saline solution intraperitoneally plus 300 mg/kg CUR intragastrically, MnCl2+ CUR1 group received 15 mg/kg MnCl2 intraperitoneally plus 100 mg/kg curcumin intragastrically, MnCl2+ CUR2 group received 15 mg/kg MnCl2 intraperitoneally plus 300 mg/kg CUR intragastrically, 5 days/week, 4 weeks. Open-field and rotarod tests were used to detect animals' exploratory behavior, anxiety, depression, movement and balance ability. Morris water maze (MWM) experiment was used to detect animals' learning and memory ability. ICP-MS was used to investigate the Mn contents in striata. The rats per group were perfused in situ, their brains striata were removed by brains model and fixed for transmission electron microscope (TEM), histopathological and immunohistochemistry (ICH) analyses. The other 6 rats per group were sacrificed. Their brains striata were removed and protein expression levels of transcription factor EB (TFEB), mammalian target of rapamycin (mTOR), p-mTOR, Beclin, P62, microtubule-associated protein light chain-3 (LC3) were detected by Western blotting. Terminal deoxynucleotidyl transterase-mediated dUTP nick end labeling (TUNEL) staining was used to determine neurocyte apoptosis of rat striatum.
RESULTS:
After exposure to MnCl2 for four weeks, MnCl2-treated rats showed depressive-like behavior in open-field test, the impairments of movement coordination and balance in rotarod test and the diminishment of spatial learning and memory in MWM (P < 0.05). The striatal TH+ neurocyte significantly decreased, eosinophilic cells, aggregative α-Syn level and TUNEL-positive neurocyte significantly increased in the striatum of MnCl2 group compared with control group (P < 0.05). Chromatin condensation, mitochondria tumefaction and autophagosomes were observed in rat striatal neurocytes of MnCl2 group by TEM. TFEB nuclear translocation and autophagy occurred in the striatum of MnCl2 group. Further, the depressive behavior, movement and balance ability, spatial learning and memory ability of MnCl2+ CUR2 group were significantly improved compared with MnCl2 group (P < 0.05). TH+ neurocyte significantly increased, the eosinophilic cells, aggregative α-Syn level significantly decreased in the striatum of MnCl2+ CUR2 group compared with MnCl2 group. Further, compared with MnCl2 group, chromatin condensation, mitochondria tumefaction was alleviated and autophagosomes increased, TFEB-nuclear translocation, autophagy was enhanced and TUNEL-positive neurocyte reduced significantly in the striatum of MnCl2+ CUR2 group (P < 0.05).
CONCLUSION
Curcumin alleviated the MnCl2-induced neurotoxicity and α-Syn aggregation probably by promoting TFEB nuclear translocation and enhancing autophagy.
Animals
;
Autophagy
;
Chromatin
;
Curcumin/pharmacology*
;
Male
;
Mammals
;
Manganese/toxicity*
;
Rats
;
Rats, Sprague-Dawley
;
Saline Solution/pharmacology*
;
TOR Serine-Threonine Kinases
8.Effects of low-dose photodynamic therapy on the function of human adipose mesenchymal stem cells and its mechanism.
Yang YANG ; Lei LI ; Zeng Jun YANG ; Meng Xue ZHENG ; Wei Feng HE ; Rui YIN
Chinese Journal of Burns 2022;38(9):830-838
Objective: To investigate the effects of low-dose photodynamic therapy on the proliferation, regulation, and secretion functions of human adipose mesenchymal stem cells (ADSCs) and the related mechanism, so as to explore a new method for the repair of chronic wounds. Methods: The experimental research methods were adopted. From February to April 2021, 10 patients (5 males and 5 females, aged 23 to 47 years) who underwent cutaneous surgery in the Department of Dermatology of the First Affiliated Hospital of Army Medical University (the Third Military Medical University) donated postoperative waste adipose tissue. The cells were extracted from the adipose tissue and the phenotype was identified. Three batches of ADSCs were taken, with each batch of cells being divided into normal control group with conventional culture only, photosensitizer alone group with conventional culture after being treated with Hemoporfin, irradiation alone group with conventional culture after being treated with red light irradiation, and photosensitizer+irradiation group with conventional culture after being treated with Hemoporfin and red light irradiation, with sample number of 3 in each group. At culture hour of 24 after the treatment of the first and second batches of cells, the ADSC proliferation level was evaluated by 5-ethynyl-2'-deoxyuridine staining method and the migration percentage of HaCaT cells cocultured with ADSCs was detected by Transwell experiment, respectively. On culture day of 7 after the treatment of the third batch of cells, the extracellular matrix protein expression of ADSCs was detected by immunofluorescence method. The ADSCs were divided into 0 min post-photodynamic therapy group, 15 min post-photodynamic therapy group, 30 min post-photodynamic therapy group, and 60 min post-photodynamic therapy group, with 3 wells in each group. Western blotting was used to detect the protein expressions and calculate the phosphorylated mammalian target of rapamycin complex (p-mTOR)/mammalian target of rapamycin (mTOR), phosphorylated p70 ribosomal protein S6 kinase (p-p70 S6K)/p70 ribosomal protein S6 kinase (p70 S6K) ratio at the corresponding time points after photodynamic therapy. Two batches of ADSCs were taken, and each batch was divided into normal control group, photodynamic therapy alone group, and photodynamic therapy+rapamycin group, with 3 wells in each group. At culture minute of 15 after the treatment, p-mTOR/mTOR and p-p70 S6K/p70 S6K ratios of cells from the first batch were calculated and detected as before. On culture day of 7 after the treatment, extracellular matrix protein expression of cells from the second batch was detected as before. Data were statistically analyzed with one-way analysis of variance and least significant difference test. Results: After 12 d of culture, the cells were verified as ADSCs. At culture hour of 24 after the treatment, the ADSC proliferation level ((4.0±1.0)% and (4.1±0.4)%, respectively) and HaCaT cell migration percentages (1.17±0.14 and 1.13±0.12, respectively) in photosensitizer alone group and irradiation alone group were similar to those of normal control group ((3.7±0.6)% and 1.00±0.16, respectively, P>0.05), and were significantly lower than those of photosensitizer+irradiation group ((34.2±7.0)% and 2.55±0.13, respectively, P<0.01). On culture day of 7 after the treatment, compared with those in normal control group, the expression of collagen Ⅲ in ADSCs of photosensitizer alone group was significantly increased (P<0.05), and the expressions of collagen Ⅰ and collagen Ⅲ in ADSCs of irradiation alone group were significantly increased (P<0.01). Compared with those in photosensitizer alone group and irradiation alone group, the expressions of collagen Ⅰ, collagen Ⅲ, and fibronectin of ADSCs in photosensitizer+irradiation group were significantly increased (P<0.01). Compared with those in 0 min post-photodynamic therapy group, the ratios of p-mTOR/mTOR and p-p70 S6K/p70 S6K of ADSCs in 15 min post-photodynamic therapy group were significantly increased (P<0.01), the ratios of p-p70 S6K/p70 S6K of ADSCs in 30 min post-photodynamic therapy group and 60 min post-photodynamic therapy group were both significantly increased (P<0.01). At culture minute of 15 after the treatment, compared with those in normal control group, the ratios of p-mTOR/mTOR and p-p70 S6K/p70 S6K of ADSCs in photodynamic therapy alone group were significantly increased (P<0.05 or P<0.01). Compared with those in photodynamic therapy alone group, the ratios of p-mTOR/mTOR and p-p70 S6K/p70 S6K of ADSCs in photodynamic therapy+rapamycin group were significantly decreased (P<0.05). On culture day of 7 after the treatment, compared with those in normal control group, the expressions of collagen Ⅰ, collagen Ⅲ, and fibronectin of ADSCs in photodynamic therapy alone group were significantly increased (P<0.01). Compared with those in photodynamic therapy alone group, the expressions of collagen Ⅰ, collagen Ⅲ, and fibronectin of ADSCs in photodynamic therapy+rapamycin group were significantly decreased (P<0.01). Conclusions: Low-dose photodynamic therapy can promote the proliferation of ADSCs, improve the ability of ADSCs to regulate the migration of HaCaT cells, and enhance the secretion of extracellular matrix protein by rapidly activating mTOR signaling pathway.
Adipose Tissue
;
Female
;
Fibronectins
;
Humans
;
Male
;
Mesenchymal Stem Cells
;
Photochemotherapy
;
Photosensitizing Agents/pharmacology*
;
Sirolimus/pharmacology*
;
TOR Serine-Threonine Kinases
9.Novel inhibitors against the bacterial signal peptidase I.
Guo-Jian LIAO ; Ying HE ; Jian-Ping XIE
Acta Pharmaceutica Sinica 2012;47(12):1561-1566
New antibiotics with novel modes of action and structures are urgently needed to combat the emergence of multidrug-resistant bacteria. Bacterial signal peptidase I (SPase I) is an indispensable enzyme responsible for cleaving the signal peptide of preprotein to release the matured proteins. Increasing evidence suggests that SPase I plays a crucial role in bacterial pathogenesis by regulating the excretion of a variety of virulent factors, maturation of quorum sensing factor and the intrinsic resistance against beta-lactams. Recently, breakthrough has been achieved in the understanding of three-dimensional structure of SPase I as well as the mechanism of enzyme-inhibitors interaction. Three families of inhibitors are identified, i.e. signal peptide derivatives, beta-lactams and arylomycins. In this article, we summarize the recent advance in the study of structure, activity and structure-activity relationship of SPase I inhibitors.
Animals
;
Anti-Bacterial Agents
;
pharmacology
;
Bacteria
;
drug effects
;
Escherichia coli
;
drug effects
;
Membrane Proteins
;
antagonists & inhibitors
;
metabolism
;
Oligopeptides
;
chemistry
;
pharmacology
;
Serine Endopeptidases
;
metabolism
;
Serine Proteinase Inhibitors
;
chemistry
;
pharmacology
;
Structure-Activity Relationship
;
beta-Lactams
;
antagonists & inhibitors
10.Effect and mechanism of Dahuang Zhechong Pills against testicular aging in rats by inhibiting necroptosis signaling pathway.
Huan LI ; Yue TU ; Yi-Gang WAN ; Geng-Lin MU ; Wei WU ; Jia-Xin CHEN ; Mei-Zi WANG ; Jie WANG ; Yan FU ; Yu-Feng CAI ; Yu WANG ; Zi-Yue WAN
China Journal of Chinese Materia Medica 2022;47(15):4119-4127
To explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a classical prescription, in improving testicular aging(TA) in vivo, the authors randomly divided 24 male rats into four groups: the normal, model, DHZCP and vitamin E(VE) groups. The TA rat model was established by continuous gavage of D-galactose(D-gal). During the experiment, the rats in the DHZCP and VE groups were given DHZCP suspension and VE suspension, respectively by gavage, while those in the normal and model groups were gavaged saline separately every day. After the co-administration of D-gal and various drugs for 60 days, all rats were sacrificed, and their blood and testis were collected. Further, various indexes related to TA and necroptosis of testicular cells in the model rats were examined and investigated, which included the aging phenotype, total testicular weight, testicular index, histopathological features of testis, number of spermatogenic cells, sex hormone level, expression characteristics of reactive oxygen species(ROS) in testis, expression levels and characteristics of cyclins in testis, and protein expression levels of the key molecules in receptor-interacting serine/threonine-protein kinase 1(RIPK1)/receptor-interacting serine/threonine-protein kinase 3(RIPK3)/mixed lineage kinase domain like pseudokinase(MLKL) signaling pathway in each group. The results showed that, for the TA model rats, both DHZCP and VE improved their aging phenotype, total testicular weight, testicular index, pathological features of testis, number of spermatogenic cells, serum testosterone and follicle stimulating hormone levels, expression characteristics of ROS and protein expression levels and characteristics of P21 and P53 in testis. In addition, DHZCP and VE improved the protein expression levels of the key molecules in RIPK1/RIPK3/MLKL signaling pathway in testis of the model rats. Specifically, DHZCP was better than VE in the improvement of RIPK3. In conclusion, in this study, the authors found that DHZCP, similar to VE, ameliorated D-gal-induced TA in model rats in vivo, and its mechanism was related to reducing necroptosis of testicular cells by inhibiting the activation of RIPK1/RIPK3/MLKL signaling pathway. This study provided preliminary pharmacological evidence for the development and application of classical prescriptions in the field of men's health.
Aging
;
Animals
;
Drugs, Chinese Herbal
;
Male
;
Necroptosis
;
Protein Kinases/genetics*
;
Rats
;
Reactive Oxygen Species/metabolism*
;
Receptor-Interacting Protein Serine-Threonine Kinases/pharmacology*
;
Serine/pharmacology*
;
Signal Transduction
;
Testis
;
Threonine/pharmacology*