1.Corrigendum: Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and alpha-synuclein aggregation.
Eun Jin BAE ; Na Young YANG ; Cheolsoon LEE ; He Jin LEE ; Seokjoong KIM ; Sergio Pablo SARDI ; Seung Jae LEE
Experimental & Molecular Medicine 2015;47(10):e188-
The authors have noticed an error in publication of this paper.
2.Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and alpha-synuclein aggregation.
Eun Jin BAE ; Na Young YANG ; Cheolsoon LEE ; He Jin LEE ; Seokjoong KIM ; Sergio Pablo SARDI ; Seung Jae LEE
Experimental & Molecular Medicine 2015;47(3):e153-
Lysosomal dysfunction is a common pathological feature of neurodegenerative diseases. GTP-binding protein type A1 (GBA1) encodes beta-glucocerebrosidase 1 (GCase 1), a lysosomal hydrolase. Homozygous mutations in GBA1 cause Gaucher disease, the most common lysosomal storage disease, while heterozygous mutations are strong risk factors for Parkinson's disease. However, whether loss of GCase 1 activity is sufficient for lysosomal dysfunction has not been clearly determined. Here, we generated human neuroblastoma cell lines with nonsense mutations in the GBA1 gene using zinc-finger nucleases. Depending on the site of mutation, GCase 1 activity was lost or maintained. The cell line with GCase 1 deficiency showed indications of lysosomal dysfunction, such as accumulation of lysosomal substrates, reduced dextran degradation and accumulation of enlarged vacuolar structures. In contrast, the cell line with C-terminal truncation of GCase 1 but with intact GCase 1 activity showed normal lysosomal function. When alpha-synuclein was overexpressed, accumulation and secretion of insoluble aggregates increased in cells with GCase 1 deficiency but did not change in mutant cells with normal GCase 1 activity. These results demonstrate that loss of GCase 1 activity is sufficient to cause lysosomal dysfunction and accumulation of alpha-synuclein aggregates.
Cell Line
;
Enzyme Activation/genetics
;
Gene Knockout Techniques
;
Gene Order
;
Genetic Loci
;
Glucosylceramidase/genetics/*metabolism
;
Humans
;
Lysosomes/*metabolism
;
Mutation
;
*Protein Aggregation, Pathological/genetics
;
Protein Binding
;
Zinc Fingers
;
alpha-Synuclein/chemistry/*metabolism