1.How Do We Approach Quality Care for Patients from Middle Eastern Countries?A Phenomenological Study of Korean Nurses’ Experiences
Dael JANG ; Seonhwa CHOI ; Gahui HWANG ; Sanghee KIM
Journal of Korean Academy of Nursing 2024;54(3):372-385
Purpose:
Although more people from Middle Eastern countries are visiting South Korea for medical treatment, Korean nurses lack experience in treating them. Understanding and describing Korean nurses’ experiences can help them provide quality care to these patients by enhancing their competency in culturally appropriate care. This study described the experiences of nurses who provide care to Middle Eastern patients in clinical settings in South Korea.
Methods:
We conducted a phenomenological study to describe nurses’ experience of caring for patients from Middle Eastern countries. Ten nurses with prior experience in caring for these patients were recruited from a university-affiliated tertiary hospital. Semi-structured face-to-face interviews were conducted between May 1 and June 4, 2020. The transcribed data were analyzed using Giorgi’s phenomenological method to identify the primary and minor categories representing nurses’ experiences.
Results:
Four major categories (new experiences in caring for culturally diverse patients, challenges in caring for patients in a culturally appropriate manner, nursing journey of mutual agreement with culturally diverse patients, and being and becoming more culturally competent) and 11 subcategories were identified.
Conclusion
Nurses experience various challenges when caring for Middle Eastern patients with diverse language and cultural needs. However, nurses strive to provide high-quality care using various approaches and experience positive emotions through this process. To provide quality care to these patients, hospital environments and educational programs must be developed that center on field nurses and students and support them in delivering quality care while utilizing their cultural capabilities.
2.Association Between Persistent Treatment of Alzheimer’s Dementia and Osteoporosis Using a Common Data Model
Seonhwa HWANG ; Yong Gwon SOUNG ; Seong Uk KANG ; Donghan YU ; Haeran BAEK ; Jae-Won JANG
Dementia and Neurocognitive Disorders 2023;22(4):121-129
Background:
and Purpose: As it becomes an aging society, interest in senile diseases is increasing. Alzheimer’s dementia (AD) and osteoporosis are representative senile diseases.Various studies have reported that AD and osteoporosis share many risk factors that affect each other’s incidence. This aimed to determine if active medication treatment of AD could affect the development of osteoporosis.
Methods:
The Health Insurance Review and Assessment Service provided data consisting of diagnosis, demographics, prescription drug, procedures, medical materials, and healthcare resources. In this study, data of all AD patients in South Korea who were registered under the national health insurance system were obtained. The cohort underwent conversion to an Observational Medical Outcomes Partnership–Common Data Model version 5 format.
Results:
This study included 11,355 individuals in the good persistent group and an equal number of 11,355 individuals in the poor persistent group from the National Health Claims database for AD drug treatment. In primary analysis, the risk of osteoporosis was significantly higher in the poor persistence group than in the good persistence group (hazard ratio, 1.20 [95% confidence interval, 1.09–1.32]; p<0.001).
Conclusions
We found that the good persistence group treated with anti-dementia drugs for AD was associated with a significant lower risk of osteoporosis in this nationwide study. Further studies are needed to clarify the pathophysiological link in patients with two chronic diseases.
3.Schisandrol A and gomisin N from Schisandra chinensis extract improve hypogonadism via anti-oxidative stress in TM3 Leydig cells
Jia BAK ; Seung Ju LEE ; Tae Won KIM ; Seonhwa HWANG ; Min Ju PARK ; Rohith ARUNACHALAM ; Eunsoo YOO ; Min Hi PARK ; Yun-Sik CHOI ; Hye Kyung KIM
Nutrition Research and Practice 2023;17(1):1-12
BACKGROUND/OBJECTIVES:
Male hypogonadism is a condition where the body does not produce enough testosterone and significantly impacts health. Age, obesity, genetics, and oxidative stress are some physiological factors that may contribute to testosterone deficiency.Previous studies have shown many pharmacological benefits of Schisandra chinensis (S. chinensis) Baillon as an anti-inflammatory and antioxidant. However, the molecular mechanism of attenuating hypogonadism is yet to be well established. This research was undertaken to study the effects of S. chinensis extract (SCE) on testosterone deficiency.MATERIALS/METHODS: S. chinensis fruit was pulverized and extracted using 60% aqueous ethanol. HPLC analysis was performed to analyze and quantify the lignans of the SCE.
RESULTS:
The 2,2-diphenyl-2-picrylhydrazyl and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging assays confirmed that the SCE and its major lignans (schisandrol A and gomisin N) inhibit oxidative stress. Effects of SCE analysis on the testosterone level under oxidative stress conditions revealed that both schisandrol A and gomisin N were able to recover the lowered testosterone levels. Through mRNA expression of TM3 Leydig cell, we observed that the SCE lignans were able to induce the enzymes involved in testosterone biosynthesis-related genes such as 3β-HSD4 (P < 0.01 for SCE, and P < 0.001 for schisandrol A and gomisin N), 17β-HSD3 (P < 0.001 for SCE, schisandrol A and gomisin N), and 17, 20-desmolase (P < 0.01 for schisandrol A, and P < 0.001 for SCE and gomisin N).
CONCLUSIONS
These results support that SCE and its active components could be potential therapeutic agents for regulating and increasing testosterone production.
4.Proteome-wide Characterization and Pathophysiology Correlation in Nonischemic Cardiomyopathies
Seonhwa LEE ; Dong-Gi JANG ; Yeon Ju KYOUNG ; Jeesoo KIM ; Eui-Soon KIM ; Ilseon HWANG ; Jong-Chan YOUN ; Jong-Seo KIM ; In-Cheol KIM
Korean Circulation Journal 2024;54(8):468-481
Background and Objectives:
Although the clinical consequences of advanced heart failure (HF) may be similar across different etiologies of cardiomyopathies, their proteomic expression may show substantial differences in relation to underlying pathophysiology. We aimed to identify myocardial tissue–based proteomic characteristics and the underlying molecular pathophysiology in non-ischemic cardiomyopathy with different etiologies.
Methods:
Comparative extensive proteomic analysis of the myocardium was performed in nine patients with biopsy-proven non-ischemic cardiomyopathies (3 dilated cardiomyopathy [DCM], 2 hypertrophic cardiomyopathy [HCM], and 4 myocarditis) as well as five controls using tandem mass tags combined with liquid chromatography–mass spectrometry.Differential protein expression analysis, Gene Ontology (GO) analysis, and Ingenuity Pathway Analysis (IPA) were performed to identify proteomic differences and molecular mechanisms in each cardiomyopathy type compared to the control. Proteomic characteristics were further evaluated in accordance with clinical and pathological findings.
Results:
The principal component analysis score plot showed that the controls, DCM, and HCM clustered well. However, myocarditis samples exhibited scattered distribution. IPA revealed the downregulation of oxidative phosphorylation and upregulation of the sirtuin signaling pathway in both DCM and HCM. Various inflammatory pathways were upregulated in myocarditis with the downregulation of Rho GDP dissociation inhibitors. The molecular pathophysiology identified by extensive proteomic analysis represented the clinical and pathological properties of each cardiomyopathy with abundant proteomes.
Conclusions
Different etiologies of non-ischemic cardiomyopathies in advanced HF exhibit distinct proteomic expression despite shared pathologic findings. The benefit of tailored management strategies considering the different proteomic expressions in non-ischemic advanced HF requires further investigation.
5.Proteome-wide Characterization and Pathophysiology Correlation in Nonischemic Cardiomyopathies
Seonhwa LEE ; Dong-Gi JANG ; Yeon Ju KYOUNG ; Jeesoo KIM ; Eui-Soon KIM ; Ilseon HWANG ; Jong-Chan YOUN ; Jong-Seo KIM ; In-Cheol KIM
Korean Circulation Journal 2024;54(8):468-481
Background and Objectives:
Although the clinical consequences of advanced heart failure (HF) may be similar across different etiologies of cardiomyopathies, their proteomic expression may show substantial differences in relation to underlying pathophysiology. We aimed to identify myocardial tissue–based proteomic characteristics and the underlying molecular pathophysiology in non-ischemic cardiomyopathy with different etiologies.
Methods:
Comparative extensive proteomic analysis of the myocardium was performed in nine patients with biopsy-proven non-ischemic cardiomyopathies (3 dilated cardiomyopathy [DCM], 2 hypertrophic cardiomyopathy [HCM], and 4 myocarditis) as well as five controls using tandem mass tags combined with liquid chromatography–mass spectrometry.Differential protein expression analysis, Gene Ontology (GO) analysis, and Ingenuity Pathway Analysis (IPA) were performed to identify proteomic differences and molecular mechanisms in each cardiomyopathy type compared to the control. Proteomic characteristics were further evaluated in accordance with clinical and pathological findings.
Results:
The principal component analysis score plot showed that the controls, DCM, and HCM clustered well. However, myocarditis samples exhibited scattered distribution. IPA revealed the downregulation of oxidative phosphorylation and upregulation of the sirtuin signaling pathway in both DCM and HCM. Various inflammatory pathways were upregulated in myocarditis with the downregulation of Rho GDP dissociation inhibitors. The molecular pathophysiology identified by extensive proteomic analysis represented the clinical and pathological properties of each cardiomyopathy with abundant proteomes.
Conclusions
Different etiologies of non-ischemic cardiomyopathies in advanced HF exhibit distinct proteomic expression despite shared pathologic findings. The benefit of tailored management strategies considering the different proteomic expressions in non-ischemic advanced HF requires further investigation.
6.Proteome-wide Characterization and Pathophysiology Correlation in Nonischemic Cardiomyopathies
Seonhwa LEE ; Dong-Gi JANG ; Yeon Ju KYOUNG ; Jeesoo KIM ; Eui-Soon KIM ; Ilseon HWANG ; Jong-Chan YOUN ; Jong-Seo KIM ; In-Cheol KIM
Korean Circulation Journal 2024;54(8):468-481
Background and Objectives:
Although the clinical consequences of advanced heart failure (HF) may be similar across different etiologies of cardiomyopathies, their proteomic expression may show substantial differences in relation to underlying pathophysiology. We aimed to identify myocardial tissue–based proteomic characteristics and the underlying molecular pathophysiology in non-ischemic cardiomyopathy with different etiologies.
Methods:
Comparative extensive proteomic analysis of the myocardium was performed in nine patients with biopsy-proven non-ischemic cardiomyopathies (3 dilated cardiomyopathy [DCM], 2 hypertrophic cardiomyopathy [HCM], and 4 myocarditis) as well as five controls using tandem mass tags combined with liquid chromatography–mass spectrometry.Differential protein expression analysis, Gene Ontology (GO) analysis, and Ingenuity Pathway Analysis (IPA) were performed to identify proteomic differences and molecular mechanisms in each cardiomyopathy type compared to the control. Proteomic characteristics were further evaluated in accordance with clinical and pathological findings.
Results:
The principal component analysis score plot showed that the controls, DCM, and HCM clustered well. However, myocarditis samples exhibited scattered distribution. IPA revealed the downregulation of oxidative phosphorylation and upregulation of the sirtuin signaling pathway in both DCM and HCM. Various inflammatory pathways were upregulated in myocarditis with the downregulation of Rho GDP dissociation inhibitors. The molecular pathophysiology identified by extensive proteomic analysis represented the clinical and pathological properties of each cardiomyopathy with abundant proteomes.
Conclusions
Different etiologies of non-ischemic cardiomyopathies in advanced HF exhibit distinct proteomic expression despite shared pathologic findings. The benefit of tailored management strategies considering the different proteomic expressions in non-ischemic advanced HF requires further investigation.
7.Proteome-wide Characterization and Pathophysiology Correlation in Nonischemic Cardiomyopathies
Seonhwa LEE ; Dong-Gi JANG ; Yeon Ju KYOUNG ; Jeesoo KIM ; Eui-Soon KIM ; Ilseon HWANG ; Jong-Chan YOUN ; Jong-Seo KIM ; In-Cheol KIM
Korean Circulation Journal 2024;54(8):468-481
Background and Objectives:
Although the clinical consequences of advanced heart failure (HF) may be similar across different etiologies of cardiomyopathies, their proteomic expression may show substantial differences in relation to underlying pathophysiology. We aimed to identify myocardial tissue–based proteomic characteristics and the underlying molecular pathophysiology in non-ischemic cardiomyopathy with different etiologies.
Methods:
Comparative extensive proteomic analysis of the myocardium was performed in nine patients with biopsy-proven non-ischemic cardiomyopathies (3 dilated cardiomyopathy [DCM], 2 hypertrophic cardiomyopathy [HCM], and 4 myocarditis) as well as five controls using tandem mass tags combined with liquid chromatography–mass spectrometry.Differential protein expression analysis, Gene Ontology (GO) analysis, and Ingenuity Pathway Analysis (IPA) were performed to identify proteomic differences and molecular mechanisms in each cardiomyopathy type compared to the control. Proteomic characteristics were further evaluated in accordance with clinical and pathological findings.
Results:
The principal component analysis score plot showed that the controls, DCM, and HCM clustered well. However, myocarditis samples exhibited scattered distribution. IPA revealed the downregulation of oxidative phosphorylation and upregulation of the sirtuin signaling pathway in both DCM and HCM. Various inflammatory pathways were upregulated in myocarditis with the downregulation of Rho GDP dissociation inhibitors. The molecular pathophysiology identified by extensive proteomic analysis represented the clinical and pathological properties of each cardiomyopathy with abundant proteomes.
Conclusions
Different etiologies of non-ischemic cardiomyopathies in advanced HF exhibit distinct proteomic expression despite shared pathologic findings. The benefit of tailored management strategies considering the different proteomic expressions in non-ischemic advanced HF requires further investigation.