1.Antinociceptive Effects of Amiloride and Benzamil in Neuropathic Pain Model Rats.
Seongtae JEONG ; Seong Heon LEE ; Yeo Ok KIM ; Myung Ha YOON
Journal of Korean Medical Science 2013;28(8):1238-1243
Amiloride and benzamil showed antinocicepitve effects in several pain models through the inhibition of acid sensing ion channels (ASICs). However, their role in neuropathic pain has not been investigated. In this study, we investigated the effect of the intrathecal amiloride and benzamil in neuropathic pain model, and also examined the role of ASICs on modulation of neuropathic pain. Neuropathic pain was induced by L4-5 spinal nerve ligation in male Sprague-Dawley rats weighing 100-120 g, and intrathecal catheterization was performed for drug administration. The effects of amiloride and benzamil were measured by the paw-withdrawal threshold to a mechanical stimulus using the up and down method. The expression of ASICs in the spinal cord dorsal horn was also analyzed by RT-PCR. Intrathecal amiloride and benzamil significantly increased the paw withdrawal threshold in spinal nerve-ligated rats (87%+/-12% and 76%+/-14%, P=0.007 and 0.012 vs vehicle, respectively). Spinal nerve ligation increased the expression of ASIC3 in the spinal cord dorsal horn (P=0.01), and this increase was inhibited by both amiloride and benzamil (P<0.001 in both). In conclusion, intrathecal amiloride and benzamil display antinociceptive effects in the rat spinal nerve ligation model suggesting they may present an alternative pharmacological tool in the management of neuropathic pain at the spinal level.
Acid Sensing Ion Channels/genetics/metabolism
;
Amiloride/*analogs & derivatives/pharmacology/*therapeutic use
;
Analgesics/pharmacology/*therapeutic use
;
Animals
;
Disease Models, Animal
;
Male
;
Neuralgia/*drug therapy
;
RNA, Messenger/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reverse Transcriptase Polymerase Chain Reaction
;
Spinal Cord/metabolism
;
Transcription, Genetic/drug effects
2.Far-infrared radiation stimulates platelet-derived growth factor mediated skeletal muscle cell migration through extracellular matrix-integrin signaling.
Donghee LEE ; Yelim SEO ; Young Won KIM ; Seongtae KIM ; Hyemi BAE ; Jeongyoon CHOI ; Inja LIM ; Hyoweon BANG ; Jung Ha KIM ; Jae Hong KO
The Korean Journal of Physiology and Pharmacology 2019;23(2):141-150
Despite increased evidence of bio-activity following far-infrared (FIR) radiation, susceptibility of cell signaling to FIR radiation-induced homeostasis is poorly understood. To observe the effects of FIR radiation, FIR-radiated materials-coated fabric was put on experimental rats or applied to L6 cells, and microarray analysis, quantitative real-time polymerase chain reaction, and wound healing assays were performed. Microarray analysis revealed that messenger RNA expressions of rat muscle were stimulated by FIR radiation in a dose-dependent manner in amount of 10% and 30% materials-coated. In 30% group, 1,473 differentially expressed genes were identified (fold change [FC] > 1.5), and 218 genes were significantly regulated (FC > 1.5 and p < 0.05). Microarray analysis showed that extracellular matrix (ECM)-receptor interaction, focal adhesion, and cell migration-related pathways were significantly stimulated in rat muscle. ECM and platelet-derived growth factor (PDGF)-mediated cell migration-related genes were increased. And, results showed that the relative gene expression of actin beta was increased. FIR radiation also stimulated actin subunit and actin-related genes. We observed that wound healing was certainly promoted by FIR radiation over 48 h in L6 cells. Therefore, we suggest that FIR radiation can penetrate the body and stimulate PDGF-mediated cell migration through ECM-integrin signaling in rats.
Actins
;
Animals
;
Cell Movement*
;
Extracellular Matrix
;
Focal Adhesions
;
Gene Expression
;
Homeostasis
;
Infrared Rays
;
Integrins
;
Microarray Analysis
;
Muscle, Skeletal*
;
Platelet-Derived Growth Factor*
;
Rats
;
Real-Time Polymerase Chain Reaction
;
RNA, Messenger
;
Wound Healing
3.The Unreliability of MTT Assay in the Cytotoxic Test of Primary Cultured Glioblastoma Cells.
Hwa Yeon JO ; Yona KIM ; Hyung Woo PARK ; Hyo Eun MOON ; Seongtae BAE ; Jinwook KIM ; Dong Gyu KIM ; Sun Ha PAEK
Experimental Neurobiology 2015;24(3):235-245
MTT assay is commonly used to assess the cellular cytotoxicity caused by anticancer drugs in glioblastomas. However, there have been some reports insisting that MTT assay exhibited non-specific intracellular reduction of tetrazolium which led to underestimated results of cytotoxicity. Here, we examine whether or not MTT assay can lead to incorrect information regarding alcohol-induced cytotoxicity on immortalized and primary glioblastoma cells. MTT assay was applied to assess the ethanol-induced cytotoxicity at various ethanol concentrations. The cellular cytotoxicity induced by different doses of ethanol was analyzed and compared through several cytotoxic assays. Ethanol-induced cytotoxicity observed through MTT assay on both cell types was shown to be ethanol dose-dependent below a 3% concentration. However, the cytotoxicity was shown to be markedly underestimated only in primary cells at a 5% concentration. RT-PCR and Western Blot showed increased expressions of pro-apoptotic proteins and decreased expressions of anti-apoptotic proteins in an ethanol dose-dependent manner in both cell types. Furthermore, we present a possible mechanism for the unreliable result of MTT assay. A high concentration of ethanol induces more severe membrane damage and increased intracellular concentration of NADH in primary cells which enhances the nonspecific reduction of tetrazolium salt. Together, our findings demonstrate that the cytotoxicity on primary cells could inaccurately be assessed when detected through MTT assay. Therefore, a careful interpretation is needed when one would analyze the cytotoxic results of MTT assay, and it is suggested that other assays must be accompanied to produce more reliable and accurate cytotoxic results on primary glioblastoma cells.
Apoptosis Regulatory Proteins
;
Blotting, Western
;
Ethanol
;
Glioblastoma*
;
Membranes
;
NAD
;
Tetrazolium Salts
4.Expression of potassium channel genes predicts clinical outcome in lung cancer
Eun A KO ; Young Won KIM ; Donghee LEE ; Jeongyoon CHOI ; Seongtae KIM ; Yelim SEO ; Hyoweon BANG ; Jung Ha KIM ; Jae Hong KO
The Korean Journal of Physiology and Pharmacology 2019;23(6):529-537
Lung cancer is the most common cause of cancer deaths worldwide and several molecular signatures have been developed to predict survival in lung cancer. Increasing evidence suggests that proliferation and migration to promote tumor growth are associated with dysregulated ion channel expression. In this study, by analyzing high-throughput gene expression data, we identify the differentially expressed K⁺ channel genes in lung cancer. In total, we prioritize ten dysregulated K⁺ channel genes (5 up-regulated and 5 down-regulated genes, which were designated as K-10) in lung tumor tissue compared with normal tissue. A risk scoring system combined with the K-10 signature accurately predicts clinical outcome in lung cancer, which is independent of standard clinical and pathological prognostic factors including patient age, lymph node involvement, tumor size, and tumor grade. We further indicate that the K-10 potentially predicts clinical outcome in breast and colon cancers. Molecular signature discovered through K⁺ gene expression profiling may serve as a novel biomarker to assess the risk in lung cancer.
Breast
;
Colonic Neoplasms
;
Gene Expression
;
Gene Expression Profiling
;
Humans
;
Ion Channels
;
Lung Neoplasms
;
Lung
;
Lymph Nodes
;
Potassium Channels
;
Potassium
5.The Effect of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells in a Collagenase-Induced Intracerebral Hemorrhage Rat Model.
Kwanwoo KIM ; Hyung Woo PARK ; Hyo Eun MOON ; Jin Wook KIM ; Seongtae BAE ; Jong Wook CHANG ; Wonil OH ; Yoon Sun YANG ; Sun Ha PAEK
Experimental Neurobiology 2015;24(2):146-155
Intracerebral hemorrhage (ICH) is one of the devastating types of stroke. Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have potential benefits in recovery from brain damage following ICH. This study aimed to identify the beneficial effects of hUCB-MSCs and investigate whether they have anti-inflammatory effects on the ICH brain via neurotrophic factors or cytokines. hUCB-MSCs were transplanted into a collagenase-induced ICH rat model. At 2, 9, 16, and 30 days after ICH, rotarod and limb placement tests were performed to measure behavioral outcomes. ICH rats were sacrificed to evaluate the volume of lesion using H&E staining. Immunostaining was performed to investigate neurogenesis, angiogenesis, and anti-apoptosis at 4 weeks after transplantation. Inflammatory factors (TNF-alpha, COX-2, microglia, and neutrophils) were analyzed by immunofluorescence staining, RT-PCR, and Western blot at 3 days after transplantation. hUCB-MSCs were associated with neurological benefits and reduction in lesion volume. The hUCB-MSCs-treated group tended to reveal high levels of neurogenesis, angiogenesis, and anti-apoptosis (significant for angiogenesis). The expression levels of inflammatory factors tended to be reduced in the hUCB-MSCs-treated group compared with the controls. Our study suggests that hUCB-MSCs may improve neurological outcomes and modulate inflammation-associated immune cells and cytokines in ICH-induced inflammatory responses.
Animals
;
Apoptosis
;
Blotting, Western
;
Brain
;
Cerebral Hemorrhage*
;
Cytokines
;
Extremities
;
Fluorescent Antibody Technique
;
Humans
;
Mesenchymal Stromal Cells*
;
Microglia
;
Models, Animal*
;
Nerve Growth Factors
;
Neurogenesis
;
Rats
;
Stroke
;
Umbilical Cord*
6.Cardiovascular and arousal responses to single-lumen endotracheal and double-lumen endobronchial intubation in the normotensive and hypertensive elderly.
Kyung Yeon YOO ; Cheol Won JEONG ; Woong Mo KIM ; Hyung Kon LEE ; Seongtae JEONG ; Seok Jae KIM ; Hong Beum BAE ; Dong Yun LIM ; Sung Su CHUNG
Korean Journal of Anesthesiology 2011;60(2):90-97
BACKGROUND: Endotracheal intubation usually causes transient hypertension and tachycardia. The cardiovascular and arousal responses to endotracheal and endobronchial intubation were determined during rapid-sequence induction of anesthesia in normotensive and hypertensive elderly patients. METHODS: Patients requiring endotracheal intubation with (HT, n = 30) or without hypertension (NT, n = 30) and those requiring endobronchial intubation with (HB, n = 30) or without hypertension (NB, n = 30) were included in the study. Anesthesia was induced with intravenous thiopental 5 mg/kg followed by succinylcholine 1.5 mg/kg. After intubation, all subjects received 2% sevoflurane in 50% nitrous oxide and oxygen. Mean arterial pressure (MAP), heart rate (HR), plasma catecholamine concentration, and Bispectral Index (BIS) values, were measured before and after intubation. RESULTS: The intubation significantly increased MAP, HR, BIS values and plasma catecholamine concentrations in all groups, the peak value of increases was comparable between endotracheal and endobronchial intubation. However, pressor response persisted longer in the HB group than in the HT group (5.1 +/- 1.6 vs. 3.2 +/- 0.9 min, P < 0.05). The magnitude of increases in MAP and norepinephrine from pre-intubation values was greater in the hypertensive than in the normotensive group (P < 0.05), while there were no differences in those of HR and BIS between the hypertensive and normotensive groups. CONCLUSIONS: Cardiovascular response and arousal response, as measured by BIS, were similar in endobronchial and endotracheal intubation groups regardless of the presence or absence of hypertension except for prolonged pressor response in the HB group. However, the hypertensive patients showed enhanced cardiovascular responses than the normotensive patients.
Aged
;
Anesthesia
;
Arousal
;
Arterial Pressure
;
Heart Rate
;
Humans
;
Hypertension
;
Intubation
;
Intubation, Intratracheal
;
Methyl Ethers
;
Nitrous Oxide
;
Norepinephrine
;
Oxygen
;
Plasma
;
Succinylcholine
;
Tachycardia
;
Thiopental
7.Vasopressin ameliorates hypotension induced by beach chair positioning in a dose-dependent manner in patients undergoing arthroscopic shoulder surgery under general anesthesia.
Soo Young CHO ; Joungmin KIM ; Sun Hong PARK ; Seongtae JEONG ; Sung Su CHUNG ; Kyung Yeon YOO
Korean Journal of Anesthesiology 2015;68(3):232-240
BACKGROUND: The beach chair position (BCP) is associated with hypotension that may lead to cerebral ischemia. Arginine vasopressin (AVP), a potent vasoconstrictor, has been shown to prevent hypotension in BCP. It also improves cerebral oxygenation in different animal models. The present study examined the effect of escalating doses of AVP on systemic hemodynamics and cerebral oxygenation during surgery in BCP under general anesthesia. METHODS: Sixty patients undergoing arthroscopic shoulder surgery in BCP under general anesthesia were randomly allocated to receive either saline (control, n = 15) or three different doses of AVP (0.025, 0.05, or 0.075 U/kg; n = 15 each) 2 minutes before BCP. Mean arterial pressure (MAP), heart rate (HR), regional cerebral oxygen saturation (SctO2), and jugular venous oxygen saturation (SjvO2) were measured after induction of anesthesia and before (presitting in supine position) and after BCP. RESULTS: AVP per se given before BCP increased MAP, and decreased SjvO2, SctO2, and HR in all patients (P < 0.05 for all). BCP decreased MAP, the magnitude of which and hence the incidence of hypotension was decreased by AVP in a dose-dependent manner. While in BCP, every dose of AVP reduced the HR and SctO2. Accordingly, it increased the incidence of cerebral desaturation (> 20% SctO2 decrease from the baseline value) with no differences in SjvO2 and the incidence of SjvO2 < 50% or SjvO2 < 40% among the groups. CONCLUSIONS: AVP ameliorates hypotension associated with BCP in a dose-dependent manner in patients undergoing shoulder surgery under general anesthesia. However, AVP may have negative effects on SctO2 before and after BCP and on SjvO2 before BCP.
Anesthesia
;
Anesthesia, General*
;
Arginine Vasopressin
;
Arterial Pressure
;
Brain Ischemia
;
Heart Rate
;
Hemodynamics
;
Humans
;
Hypotension*
;
Incidence
;
Models, Animal
;
Oxygen
;
Shoulder*
;
Vasopressins*
8.Effects of intravenously administered indocyanine green on near-infrared cerebral oximetry and pulse oximetry readings.
Ho Young BAEK ; Hyun Jung LEE ; Joung Min KIM ; Soo Young CHO ; Seongtae JEONG ; Kyung Yeon YOO
Korean Journal of Anesthesiology 2015;68(2):122-127
BACKGROUND: Intravenously administered indocyanine green (ICG) may cause misreadings of cerebral oximetry and pulse oximetry in patients undergoing carotid endarterectomy under general anesthesia. The present study determined the effects of two different doses (12.5 mg vs. 25 mg) of ICG on regional cerebral tissue oxygen saturation (SctO2) and percutaneous peripheral oxygen saturation (SpO2). METHODS: Twenty-six patients receiving ICG for videoangiography were divided into two groups according to the dosage (12.5 mg and 25 mg, n = 13 in each group). Heart rate, arterial blood pressure, SctO2, and SpO2 were measured before and after an intravenous bolus administration of ICG. RESULTS: Following the dye administration, no changes in heart rate or arterial blood pressure were noted in either group. SctO2 was increased in both groups; however, the magnitude of the increase was greater (21.6 +/- 5.8% vs. 12.6 +/- 4.1%, P < 0.0001) and more prolonged (28.4 +/- 9.6 min vs. 13.8 +/- 5.2 min, P < 0.0001) in the 25 mg group than in the 12.5 mg group. In contrast, SpO2 was decreased in both groups; the magnitude of the decrease was greater in the 25 mg group than in the 12.5 mg group (4.0 +/- 0.8% vs. 1.6 +/- 1.0%, P < 0.0001). There were no differences in the time to reach the peak SctO2 or to reach the nadir SpO2 between the two groups. CONCLUSIONS: In patients given ICG for videoangiography, a 25 mg bolus results in a greater and more prolonged increase in SctO2 and a greater reduction in SpO2 than a 12.5 mg bolus, with no differences in the time to reach the peak SctO2 or to reach the nadir SpO2.
Anesthesia, General
;
Arterial Pressure
;
Endarterectomy, Carotid
;
Heart Rate
;
Humans
;
Indocyanine Green*
;
Oximetry*
;
Oxygen
;
Reading*
;
Spectroscopy, Near-Infrared
9.Antinociceptive role of neurotensin receptor 1 in rats with chemotherapy-induced peripheral neuropathy
Mei YIN ; Yeo-Ok KIM ; Jeong-Il CHOI ; Seongtae JEONG ; Si-Ho YANG ; Hong-Beom BAE ; Myung-Ha YOON
The Korean Journal of Pain 2020;33(4):318-325
Background:
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of anti-cancer drugs. Neurotensin receptors (NTSRs) are widely distributed within the pain circuits in the central nervous system. The purpose of this study was to determine the role of NTSR1 by examining the effects of an NTSR1 agonist in rats with CIPN and investigate the contribution of spinal serotonin receptors to the antinociceptive effect.
Methods:
Sprague–Dawley rats (weight 150–180 g) were used in this study. CIPN was induced by injecting cisplatin (2 mg/kg) once a day for 4 days. Intrathecal catheters were placed into the subarachnoid space of the CIPN rats. The antiallodynic effects of intrathecally or intraperitoneally administered PD 149163, an NTSR1 agonist, were evaluated. Furthermore, the levels of serotonin in the spinal cord were measured by high-performance liquid chromatography.
Results:
Intrathecal or intraperitoneal PD 149163 increased the paw withdrawal threshold in CIPN rats. Intrathecal administration of the NTSR1 antagonist SR 48692 suppressed the antinociceptive effect of PD 149163 given via the intrathecal route, but not the antinociceptive effect of intraperitoneally administered PD 149163. Intrathecal administration of dihydroergocristine, a serotonin receptor antagonist, suppressed the antinociceptive effect of intrathecally administered, but not intraperitoneally administered, PD 149163. Injecting cisplatin diminished the serotonin level in the spinal cord, but intrathecal or intraperitoneal administration of PD 149163 did not affect this reduction.
Conclusions
NTSR1 played a critical role in modulating CIPN-related pain. Therefore, NTSR1 agonists may be useful therapeutic agents to treat CIPN. In addition, spinal serotonin receptors may be indirectly involved in the effect of NTSR1 agonist.
10.Profiling of remote skeletal muscle gene changes resulting from stimulation of atopic dermatitis disease in NC/Nga mouse model
Donghee LEE ; Yelim SEO ; Young Won KIM ; Seongtae KIM ; Jeongyoon CHOI ; Sung Hee MOON ; Hyemi BAE ; Hui Sok KIM ; Hangyeol KIM ; Jae Hyun KIM ; Tae Young KIM ; Eunho KIM ; Suemin YIM ; Inja LIM ; Hyoweon BANG ; Jung Ha KIM ; Jae Hong KO
The Korean Journal of Physiology and Pharmacology 2019;23(5):367-379
Although atopic dermatitis (AD) is known to be a representative skin disorder, it also affects the systemic immune response. In a recent study, myoblasts were shown to be involved in the immune regulation, but the roles of muscle cells in AD are poorly understood. We aimed to identify the relationship between mitochondria and atopy by genome-wide analysis of skeletal muscles in mice. We induced AD-like symptoms using house dust mite (HDM) extract in NC/Nga mice. The transcriptional profiles of the untreated group and HDM-induced AD-like group were analyzed and compared using microarray, differentially expressed gene and functional pathway analyses, and protein interaction network construction. Our microarray analysis demonstrated that immune response-, calcium handling-, and mitochondrial metabolism-related genes were differentially expressed. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology pathway analyses, immune response pathways involved in cytokine interaction, nuclear factor-kappa B, and T-cell receptor signaling, calcium handling pathways, and mitochondria metabolism pathways involved in the citrate cycle were significantly upregulated. In protein interaction network analysis, chemokine family-, muscle contraction process-, and immune response-related genes were identified as hub genes with many interactions. In addition, mitochondrial pathways involved in calcium signaling, cardiac muscle contraction, tricarboxylic acid cycle, oxidation-reduction process, and calcium-mediated signaling were significantly stimulated in KEGG and Gene Ontology analyses. Our results provide a comprehensive understanding of the genome-wide transcriptional changes of HDM-induced AD-like symptoms and the indicated genes that could be used as AD clinical biomarkers.
Animals
;
Biomarkers
;
Calcium
;
Calcium Signaling
;
Citric Acid
;
Citric Acid Cycle
;
Cytokines
;
Dermatitis, Atopic
;
Gene Ontology
;
Genome
;
Metabolism
;
Mice
;
Microarray Analysis
;
Mitochondria
;
Muscle Cells
;
Muscle Contraction
;
Muscle, Skeletal
;
Myoblasts
;
Myocardium
;
Oxidation-Reduction
;
Protein Interaction Maps
;
Pyroglyphidae
;
Receptors, Antigen, T-Cell
;
Skin