1.A Case of Cancer Associated Retinopathy with Small Cell Lung Carcinoma.
Seongmin LIM ; Jongoh BAE ; Sanggeon CHO ; Sanggu KANG ; Eunyoung LEE ; Sungkuk KIM ; Young KIM ; Jinyoung KWAK ; Kwiwan KIM
Tuberculosis and Respiratory Diseases 2005;59(6):679-683
Cancer associated retinopathy (CAR) syndrome is a very rare ocular manifestation of paraneoplastic syndrome, and is characterized clinically by progressive visual impairment. Immune cross-reactivity between antigens in the cancerous tissue and antigens in the retina may play an important role in its pathogenesis, and most of cases are associated with lung carcinoma, particularly small cell lung cancer. The clinical triad of CAR is described as photosensitivity, ring scotomata, and an attenuated retinal arterial caliber. Here, we report a 61-year old male patient with CAR syndrome, who had small cell lung carcinoma in the stage of limited disease, with a brief review of the relevant literature.
Humans
;
Lung
;
Male
;
Middle Aged
;
Paraneoplastic Syndromes
;
Paraneoplastic Syndromes, Ocular*
;
Retina
;
Retinaldehyde
;
Small Cell Lung Carcinoma*
;
Vision Disorders
2.Nosocomial Outbreak of COVID-19 in a Hematologic Ward
Jiwon JUNG ; Jungmin LEE ; Seongmin JO ; Seongman BAE ; Ji Yeun KIM ; Hye Hee CHA ; Young-Ju LIM ; Sun Hee KWAK ; Min Jee HONG ; Eun Ok KIM ; Joon-Yong BAE ; Changmin KANG ; Minki SUNG ; Man-Seong PARK ; Sung-Han KIM
Infection and Chemotherapy 2021;53(2):332-341
Background:
Coronavirus disease 2019 (COVID-19) outbreaks occur in hospitals in many parts of the world. In hospital settings, the possibility of airborne transmission needs to be investigated thoroughly.
Materials and Methods:
There was a nosocomial outbreak of COVID-19 in a hematologic ward in a tertiary hospital, Seoul, Korea. We found 11 patients and guardians with COVID-19 through vigorous contact tracing and closed-circuit television monitoring. We found one patient who probably had acquired COVID-19 through airborne-transmission. We performed airflow investigation with simulation software, whole-genome sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Results:
Of the nine individuals with COVID-19 who had been in the hematologic ward, six stayed in one multi-patient room (Room 36), and other three stayed in different rooms (Room 1, 34, 35). Guardian in room 35 was close contact to cases in room 36, and patient in room 34 used the shared bathroom for teeth brushing 40 minutes after index used.Airflow simulation revealed that air was spread from the bathroom to the adjacent room 1 while patient in room 1 did not used the shared bathroom. Airflow was associated with poor ventilation in shared bathroom due to dysfunctioning air-exhaust, grill on the door of shared bathroom and the unintended negative pressure of adjacent room.
Conclusion
Transmission of SARS-CoV-2 in the hematologic ward occurred rapidly in the multi-patient room and shared bathroom settings. In addition, there was a case of possible airborne transmission due to unexpected airflow.
3.Nosocomial Outbreak of COVID-19 in a Hematologic Ward
Jiwon JUNG ; Jungmin LEE ; Seongmin JO ; Seongman BAE ; Ji Yeun KIM ; Hye Hee CHA ; Young-Ju LIM ; Sun Hee KWAK ; Min Jee HONG ; Eun Ok KIM ; Joon-Yong BAE ; Changmin KANG ; Minki SUNG ; Man-Seong PARK ; Sung-Han KIM
Infection and Chemotherapy 2021;53(2):332-341
Background:
Coronavirus disease 2019 (COVID-19) outbreaks occur in hospitals in many parts of the world. In hospital settings, the possibility of airborne transmission needs to be investigated thoroughly.
Materials and Methods:
There was a nosocomial outbreak of COVID-19 in a hematologic ward in a tertiary hospital, Seoul, Korea. We found 11 patients and guardians with COVID-19 through vigorous contact tracing and closed-circuit television monitoring. We found one patient who probably had acquired COVID-19 through airborne-transmission. We performed airflow investigation with simulation software, whole-genome sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Results:
Of the nine individuals with COVID-19 who had been in the hematologic ward, six stayed in one multi-patient room (Room 36), and other three stayed in different rooms (Room 1, 34, 35). Guardian in room 35 was close contact to cases in room 36, and patient in room 34 used the shared bathroom for teeth brushing 40 minutes after index used.Airflow simulation revealed that air was spread from the bathroom to the adjacent room 1 while patient in room 1 did not used the shared bathroom. Airflow was associated with poor ventilation in shared bathroom due to dysfunctioning air-exhaust, grill on the door of shared bathroom and the unintended negative pressure of adjacent room.
Conclusion
Transmission of SARS-CoV-2 in the hematologic ward occurred rapidly in the multi-patient room and shared bathroom settings. In addition, there was a case of possible airborne transmission due to unexpected airflow.