1.Seasonal Variation in Hemoglobin A1c in Korean Patients with Type 2 Diabetes Mellitus.
Yoon Ji KIM ; Seongkeun PARK ; Wangjin YI ; Kyung Sang YU ; Tae Hyuk KIM ; Tae Jung OH ; Jinwook CHOI ; Young Min CHO
Journal of Korean Medical Science 2014;29(4):550-555
A seasonal variation of glucose homeostasis in humans has been reported in various geographic regions. In this study, we examined seasonal variations in hemoglobin A1c (HbA1c) in patients with type 2 diabetes living in Korea. We analyzed 57,970 HbA1c values from 4,191 patients and the association of these values with ambient temperature for 3.5 yr. Overall, HbA1c exhibited its highest values from February to March and its lowest values from September to October (coefficient for cos t = -0.0743, P = 0.058) and the difference between the peak and nadir in a year was 0.16%-0.25%. A statistically significant seasonal variation was observed in the patients who were taking oral anti-diabetic drugs (OADs) without insulin treatment (coefficient for cos t = -0.0949, P < 0.05). The Spearman correlation coefficient between daily HbA1c values and the corresponding 3-month moving average ambient temperature was -0.2154 (95% confidence interval [CI]: -0.2711, -0.1580; P < 0.05). In conclusion, HbA1c values exhibited a seasonal variation in Korean patients with type 2 diabetes, with the highest values during the cold season, particularly in those who were treated with OADs, which should be taken into account in clinical practice for stable glucose control during the cold season.
Anti-Bacterial Agents/therapeutic use
;
Asian Continental Ancestry Group
;
Bacterial Infections/prevention & control
;
Diabetes Mellitus, Type 2/*diagnosis/drug therapy
;
Hemoglobin A, Glycosylated/*analysis
;
Humans
;
Hypoglycemic Agents/therapeutic use
;
Insulin/therapeutic use
;
Republic of Korea
;
Seasons
;
Temperature
2.5-(4-Hydroxy-2,3,5-trimethylbenzylidene) thiazolidine-2,4-dione attenuates atherosclerosis possibly by reducing monocyte recruitment to the lesion.
Jae Hoon CHOI ; Jong Gil PARK ; Hyung Jun JEON ; Mi Sun KIM ; Mi Ran LEE ; Mi Ni LEE ; SeongKeun SONN ; Jae Hong KIM ; Mun Han LEE ; Myung Sook CHOI ; Yong Bok PARK ; Oh Seung KWON ; Tae Sook JEONG ; Woo Song LEE ; Hyun Bo SHIM ; Dong Hae SHIN ; Goo Taeg OH
Experimental & Molecular Medicine 2011;43(8):471-478
A variety of benzylidenethiazole analogs have been demonstrated to inhibit 5-lipoxygenase (5-LOX). Here we report the anti-atherogenic potential of 5-(4-hydroxy-2,3,5-trimethylbenzylidene) thiazolidin-2,4-dione (HMB-TZD), a benzylidenethiazole analog, and its potential mechanism of action in LDL receptor-deficient (Ldlr-/-) mice. HMB-TZD Treatment reduced leukotriene B4 (LTB4) production significantly in RAW264.7 macrophages and SVEC4-10 endothelial cells. Macrophages or endothelial cells pre-incubated with HMB-TZD for 2 h and then stimulated with lipopolysaccharide or tumor necrosis factor-alpha (TNF-alpha) displayed reduced cytokine production. Also, HMB-TZD reduced cell migration and adhesion in accordance with decreased proinflammatory molecule production in vitro and ex vivo. HMB-TZD treatment of 8-week-old male Ldlr-/- mice resulted in significantly reduced atherosclerotic lesions without a change to plasma lipid profiles. Moreover, aortic expression of pro-atherogenic molecules involved in the recruitment of monocytes to the aortic wall, including TNF-alpha , MCP-1, and VCAM-1, was downregulated. HMB-TZD also reduced macrophage infiltration into atherosclerotic lesions. In conclusion, HMB-TZD ameliorates atherosclerotic lesion formation possibly by reducing the expression of proinflammatory molecules and monocyte/macrophage recruitment to the lesion. These results suggest that HMB-TZD, and benzylidenethiazole analogs in general, may have therapeutic potential as treatments for atherosclerosis.
Animals
;
Atherosclerosis/*drug therapy
;
Cell Adhesion/drug effects
;
Cell Line
;
Cell Movement/drug effects
;
Chemokine CCL2/metabolism
;
Dinoprostone/metabolism
;
Enzyme-Linked Immunosorbent Assay
;
Humans
;
Leukotriene B4/metabolism
;
Macrophages/cytology/drug effects
;
Male
;
Mice
;
Monocytes/cytology/*drug effects
;
Random Allocation
;
Receptors, LDL/deficiency/genetics
;
Thiazolidinediones/*therapeutic use
;
Tumor Necrosis Factor-alpha/pharmacology