1.Obesity and binge alcohol intake are deadly combination to induce steatohepatitis: A model of high-fat diet and binge ethanol intake
Seonghwan HWANG ; Tianyi REN ; Bin GAO
Clinical and Molecular Hepatology 2020;26(4):586-594
Obesity and binge drinking often coexist and work synergistically to promote steatohepatitis; however, the underlying mechanisms remain obscure. In this mini-review, we briefly summarize clinical evidence of the synergistical effect of obesity and heavy drinking on steatohepatitis and discuss the underlying mechanisms obtained from the study of several mouse models. High-fat diet (HFD) feeding and binge ethanol synergistically induced steatohepatitis and fibrosis in mice with significant intrahepatic neutrophil infiltration; such HFD-plus-ethanol treatment markedly up-regulated the hepatic expression of many chemokines with the highest fold (approximately 30-fold) induction of chemokine (C-X-C motif) ligand 1 (Cxcl1), which contributes to hepatic neutrophil infiltration and liver injury. Furthermore, HFD feeding activated peroxisome proliferator-activated receptor gamma that subsequently inhibited CXCL1 upregulation in hepatocytes, thereby forming a negative feedback loop to prevent neutrophil overaction; whereas binge ethanol blocked this loop and then exacerbated CXCL1 elevation, neutrophil infiltration, and liver injury. Interestingly, inflamed mouse hepatocytes attracted neutrophils less effectively than inflamed human hepatocytes due to the lower induction of CXCL1 and the lack of the interleukin (IL)-8 gene in the mouse genome, which may be one of the reasons for difficulty in development of mouse models of alcoholic steatohepatitis and nonalcoholic steatohepatitis (NASH). Hepatic overexpression of Cxcl1 and/or IL-8 promoted steatosis-to-NASH progression in HFD-fed mice by inducing neutrophil infiltration, oxidative stress, hepatocyte death, fibrosis, and p38 mitogen-activated protein kinase activation. Collectively, obesity and binge drinking synergistically promote steatohepatitis via the induction of CXCL1 and subsequent hepatic neutrophil infiltration.
3.The SIRT6 Activator MDL-800 Inhibits PPARα and Fatty acid Oxidation-Related Gene Expression in Hepatocytes
Yeonsoo KIM ; Hyeokjin LIM ; Ye Eun CHO ; Seonghwan HWANG
Biomolecules & Therapeutics 2025;33(3):438-446
A histone deacetylase SIRT6 regulates the transcription of various genes involved in lipid metabolism. Fatty acid (FA) oxidation plays a pivotal role in maintaining hepatic lipid homeostasis, and its dysregulation significantly contributes to lipotoxicity and inflammation, driving the progression of steatotic liver disease. While SIRT6 is known to activate peroxisome proliferator-activated receptor-alpha (PPARα), a central regulator of FA oxidation, the development of SIRT6 activators capable of enhancing FA oxidation and mitigating steatotic liver disease has yet to be achieved. This study evaluated the effect of MDL-800, a selective SIRT6 activator, on the expression of PPARα and genes related to FA oxidation. In AML12 mouse hepatocytes, MDL-800 treatment activated SIRT6 but unexpectedly decreased the expression of PPARα and its FA oxidation-associated target genes. Furthermore, OSS128167, a selective SIRT6 inhibitor, did not reverse the suppressive effects of MDL-800 on PPARα, suggesting that MDL-800 downregulates PPARα and FA oxidation-related genes through a mechanism independent of SIRT6 activation. Mechanistic investigations revealed that MDL-800 increased the production of reactive oxygen species and activated stress kinases. The inhibition of PPARα by MDL-800 was reversed by co-treatment with the antioxidant N-acetylcysteine or the JNK inhibitor SP600125.In summary, MDL-800 suppresses PPARα and FA oxidation-related genes primarily through the induction of oxidative stress in hepatocytes, independent of its role as a SIRT6 activator.
4.The SIRT6 Activator MDL-800 Inhibits PPARα and Fatty acid Oxidation-Related Gene Expression in Hepatocytes
Yeonsoo KIM ; Hyeokjin LIM ; Ye Eun CHO ; Seonghwan HWANG
Biomolecules & Therapeutics 2025;33(3):438-446
A histone deacetylase SIRT6 regulates the transcription of various genes involved in lipid metabolism. Fatty acid (FA) oxidation plays a pivotal role in maintaining hepatic lipid homeostasis, and its dysregulation significantly contributes to lipotoxicity and inflammation, driving the progression of steatotic liver disease. While SIRT6 is known to activate peroxisome proliferator-activated receptor-alpha (PPARα), a central regulator of FA oxidation, the development of SIRT6 activators capable of enhancing FA oxidation and mitigating steatotic liver disease has yet to be achieved. This study evaluated the effect of MDL-800, a selective SIRT6 activator, on the expression of PPARα and genes related to FA oxidation. In AML12 mouse hepatocytes, MDL-800 treatment activated SIRT6 but unexpectedly decreased the expression of PPARα and its FA oxidation-associated target genes. Furthermore, OSS128167, a selective SIRT6 inhibitor, did not reverse the suppressive effects of MDL-800 on PPARα, suggesting that MDL-800 downregulates PPARα and FA oxidation-related genes through a mechanism independent of SIRT6 activation. Mechanistic investigations revealed that MDL-800 increased the production of reactive oxygen species and activated stress kinases. The inhibition of PPARα by MDL-800 was reversed by co-treatment with the antioxidant N-acetylcysteine or the JNK inhibitor SP600125.In summary, MDL-800 suppresses PPARα and FA oxidation-related genes primarily through the induction of oxidative stress in hepatocytes, independent of its role as a SIRT6 activator.
5.The SIRT6 Activator MDL-800 Inhibits PPARα and Fatty acid Oxidation-Related Gene Expression in Hepatocytes
Yeonsoo KIM ; Hyeokjin LIM ; Ye Eun CHO ; Seonghwan HWANG
Biomolecules & Therapeutics 2025;33(3):438-446
A histone deacetylase SIRT6 regulates the transcription of various genes involved in lipid metabolism. Fatty acid (FA) oxidation plays a pivotal role in maintaining hepatic lipid homeostasis, and its dysregulation significantly contributes to lipotoxicity and inflammation, driving the progression of steatotic liver disease. While SIRT6 is known to activate peroxisome proliferator-activated receptor-alpha (PPARα), a central regulator of FA oxidation, the development of SIRT6 activators capable of enhancing FA oxidation and mitigating steatotic liver disease has yet to be achieved. This study evaluated the effect of MDL-800, a selective SIRT6 activator, on the expression of PPARα and genes related to FA oxidation. In AML12 mouse hepatocytes, MDL-800 treatment activated SIRT6 but unexpectedly decreased the expression of PPARα and its FA oxidation-associated target genes. Furthermore, OSS128167, a selective SIRT6 inhibitor, did not reverse the suppressive effects of MDL-800 on PPARα, suggesting that MDL-800 downregulates PPARα and FA oxidation-related genes through a mechanism independent of SIRT6 activation. Mechanistic investigations revealed that MDL-800 increased the production of reactive oxygen species and activated stress kinases. The inhibition of PPARα by MDL-800 was reversed by co-treatment with the antioxidant N-acetylcysteine or the JNK inhibitor SP600125.In summary, MDL-800 suppresses PPARα and FA oxidation-related genes primarily through the induction of oxidative stress in hepatocytes, independent of its role as a SIRT6 activator.