1.Different development patterns of reward behaviors induced by ketamine and JWH-018 in striatal GAD67 knockdown mice
Sun Mi GU ; Eunchong HONG ; Sowoon SEO ; Sanghyeon KIM ; Seong Shoon YOON ; Hye Jin CHA ; Jaesuk YUN
Journal of Veterinary Science 2024;25(5):e63-
Objective:
The study was designed to examine the effects of the downregulation of GAD67 expression in the dorsal striatum on reward behavior development.
Methods:
We evaluated the effects of GAD67 knockdown on depression-like behavior and anxiety using the forced swim test and elevated plus maze test in a mouse model. We further determined the effects of GAD67 knockdown on ketamine- and JWH-018-induced conditioned place preference (CPP).
Results:
Knockdown of GAD67 in the dorsal striatum of mice increased depression-like behavior, but it decreased anxiety. Moreover, the CPP score on the NMDA receptor antagonist ketamine was increased by GAD67 knockdown, whereas the administration of JWH-018, a cannabinoid receptor agonist, did not affect the CPP score in the GAD67 knockdown mice group compared with the control group.
Conclusions
and Relevance: These results suggest that striatal GAD67 reduces GABAergic neuronal activity and may cause ketamine-induced NMDA receptor inhibition. Consequently, GAD67 downregulation induces vulnerability to the drug reward behavior of ketamine.
2.Different development patterns of reward behaviors induced by ketamine and JWH-018 in striatal GAD67 knockdown mice
Sun Mi GU ; Eunchong HONG ; Sowoon SEO ; Sanghyeon KIM ; Seong Shoon YOON ; Hye Jin CHA ; Jaesuk YUN
Journal of Veterinary Science 2024;25(5):e63-
Objective:
The study was designed to examine the effects of the downregulation of GAD67 expression in the dorsal striatum on reward behavior development.
Methods:
We evaluated the effects of GAD67 knockdown on depression-like behavior and anxiety using the forced swim test and elevated plus maze test in a mouse model. We further determined the effects of GAD67 knockdown on ketamine- and JWH-018-induced conditioned place preference (CPP).
Results:
Knockdown of GAD67 in the dorsal striatum of mice increased depression-like behavior, but it decreased anxiety. Moreover, the CPP score on the NMDA receptor antagonist ketamine was increased by GAD67 knockdown, whereas the administration of JWH-018, a cannabinoid receptor agonist, did not affect the CPP score in the GAD67 knockdown mice group compared with the control group.
Conclusions
and Relevance: These results suggest that striatal GAD67 reduces GABAergic neuronal activity and may cause ketamine-induced NMDA receptor inhibition. Consequently, GAD67 downregulation induces vulnerability to the drug reward behavior of ketamine.
3.Different development patterns of reward behaviors induced by ketamine and JWH-018 in striatal GAD67 knockdown mice
Sun Mi GU ; Eunchong HONG ; Sowoon SEO ; Sanghyeon KIM ; Seong Shoon YOON ; Hye Jin CHA ; Jaesuk YUN
Journal of Veterinary Science 2024;25(5):e63-
Objective:
The study was designed to examine the effects of the downregulation of GAD67 expression in the dorsal striatum on reward behavior development.
Methods:
We evaluated the effects of GAD67 knockdown on depression-like behavior and anxiety using the forced swim test and elevated plus maze test in a mouse model. We further determined the effects of GAD67 knockdown on ketamine- and JWH-018-induced conditioned place preference (CPP).
Results:
Knockdown of GAD67 in the dorsal striatum of mice increased depression-like behavior, but it decreased anxiety. Moreover, the CPP score on the NMDA receptor antagonist ketamine was increased by GAD67 knockdown, whereas the administration of JWH-018, a cannabinoid receptor agonist, did not affect the CPP score in the GAD67 knockdown mice group compared with the control group.
Conclusions
and Relevance: These results suggest that striatal GAD67 reduces GABAergic neuronal activity and may cause ketamine-induced NMDA receptor inhibition. Consequently, GAD67 downregulation induces vulnerability to the drug reward behavior of ketamine.
4.Different development patterns of reward behaviors induced by ketamine and JWH-018 in striatal GAD67 knockdown mice
Sun Mi GU ; Eunchong HONG ; Sowoon SEO ; Sanghyeon KIM ; Seong Shoon YOON ; Hye Jin CHA ; Jaesuk YUN
Journal of Veterinary Science 2024;25(5):e63-
Objective:
The study was designed to examine the effects of the downregulation of GAD67 expression in the dorsal striatum on reward behavior development.
Methods:
We evaluated the effects of GAD67 knockdown on depression-like behavior and anxiety using the forced swim test and elevated plus maze test in a mouse model. We further determined the effects of GAD67 knockdown on ketamine- and JWH-018-induced conditioned place preference (CPP).
Results:
Knockdown of GAD67 in the dorsal striatum of mice increased depression-like behavior, but it decreased anxiety. Moreover, the CPP score on the NMDA receptor antagonist ketamine was increased by GAD67 knockdown, whereas the administration of JWH-018, a cannabinoid receptor agonist, did not affect the CPP score in the GAD67 knockdown mice group compared with the control group.
Conclusions
and Relevance: These results suggest that striatal GAD67 reduces GABAergic neuronal activity and may cause ketamine-induced NMDA receptor inhibition. Consequently, GAD67 downregulation induces vulnerability to the drug reward behavior of ketamine.
5.Peroxiredoxin 6 Overexpression Induces Anxiolytic and Depression-Like Behaviors by Regulating the Serotonergic Pathway in Mice
Sun Mi GU ; Eunhye YU ; Young Eun KIM ; Seong Shoon YOON ; Dohyun LEE ; Jin Tae HONG ; Jaesuk YUN
Biomolecules & Therapeutics 2022;30(4):334-339
Peroxiredoxin 6 (PRDX6) is a bifunctional protein with both glutathione peroxidase and calcium-independent phospholipase activity. Recently, we reported that PRDX6 plays an important role in dopaminergic neurodegeneration in Parkinson’s disease.However, the relationship between PRDX6 function and emotional behavior remains elusive. In the present study, we examined depression- and anxiety-like behaviors in PRDX6-overexpressing transgenic (PRDX6-Tg) mice using the forced swim test, tail suspension test, open field paradigm, and elevated plus-maze. PRDX6-Tg mice exhibited depression-like behaviors and low anxiety. In particular, female PRDX6-Tg mice exhibited anxiolytic behavior in the open field test. Furthermore, the serotonin content in the cortex and 5-hydroxytryptophan-induced head twitch response were both reduced in PRDX6-Tg mice. Interestingly, levels of dopa decarboxylase expression in the cortex were decreased in male PRDX6-Tg mice but not in female mice. Our findings provide novel insights into the role of PRDX6 in 5-HT synthesis and suggest that PRDX6 overexpression can induce depression-like behaviors via downregulation of the serotonergic neuronal system.
6.Assessment of the Abuse Liability of Synthetic Cannabinoid Agonists JWH-030, JWH-175, and JWH-176.
Reinholdgher TAMPUS ; Seong Shoon YOON ; June Bryan DE LA PENA ; Chrislean Jun BOTANAS ; Hee Jin KIM ; Joung Wook SEO ; Eun Ju JEONG ; Choon Gon JANG ; Jae Hoon CHEONG
Biomolecules & Therapeutics 2015;23(6):590-596
The emergence and use of synthetic cannabinoids have greatly increased in recent years. These substances are easily dispensed over the internet and on the streets. Some synthetic cannabinoids were shown to have abuse liability and were subsequently regulated by authorities. However, there are compounds that are still not regulated probably due to the lack of abuse liability studies. In the present study, we assessed the abuse liability of three synthetic cannabinoids, namely JWH-030, JWH-175, and JWH-176. The abuse liability of these drugs was evaluated in two of the most widely used animal models for assessing the abuse potential of drugs, the conditioned place preference (CPP) and self-administration (SA) test. In addition, the open-field test was utilized to assess the effects of repeated (7 days) treatment and abrupt cessation of these drugs on the psychomotor activity of animals. Results showed that JWH-175 (0.5 mg/kg), but not JWH-030 or JWH-176 at any dose, significantly decreased the locomotor activity of mice. This alteration in locomotor activity was only evident during acute exposure to the drug and was not observed during repeated treatment and abstinence. Similarly, only JWH-175 (0.1 mg/kg) produced significant CPP in rats. On the other hand, none of the drugs tested was self-administered by rats. Taken together, the present results indicate that JWH-175, but not JWH-030 and JWH-176, may have abuse potential. More importantly, our findings indicate the complex psychopharmacological effects of synthetic cannabinoids and the need to closely monitor the production, dispensation, and use of these substances.
Animals
;
Cannabinoid Receptor Agonists*
;
Cannabinoids
;
Cannabis
;
Hand
;
Internet
;
Mice
;
Models, Animal
;
Motor Activity
;
Rats
7.Evaluation of the Abuse Potential of Novel Amphetamine Derivatives with Modifications on the Amine (NBNA) and Phenyl (EDA, PMEA, 2-APN) Sites.
Raly James Perez CUSTODIO ; Chrislean Jun BOTANAS ; Seong Shoon YOON ; June Bryan DE LA PEÑA ; Irene Joy DELA PEÑA ; Mikyung KIM ; Taeseon WOO ; Joung Wook SEO ; Choon Gon JANG ; Yong Ho KWON ; Nam Yong KIM ; Yong Sup LEE ; Hee Jin KIM ; Jae Hoon CHEONG
Biomolecules & Therapeutics 2017;25(6):578-585
Recently, there has been a rise in the number of amphetamine derivatives that serve as substitutes for controlled substances (e.g. amphetamine and methamphetamine) on the global illegal drug market. These substances are capable of producing rewarding effects similar to their parent drug. In anticipation of the future rise of new and similar psychoactive substances, we designed and synthesized four novel amphetamine derivatives with N-benzyl, N-benzylamphetamine HCl (NBNA) substituent on the amine region, 1,4-dioxane ring, ethylenedioxy-amphetamine HCl (EDA), methyl, para-methylamphetamine HCl (PMEA), and naphthalene, 2-(aminopropyl) naphthalene HCl (2-APN) substituents on the phenyl site. Then, we evaluated their abuse potential in the conditioned place preference (CPP) test in mice and self-administration (SA) test in rats. We also investigated the psychostimulant properties of the novel drugs using the locomotor sensitization test in mice. Moreover, we performed qRT-PCR analyses to explore the effects of the novel drugs on the expression of D1 and D2 dopamine receptor genes in the striatum. NBNA, but not EDA, PMEA, and 2-APN, induced CPP and SA in rodents. None of the test drugs have produced locomotor sensitization. qRT-PCR analyses demonstrated that NBNA increased the expression of striatal D1 dopamine receptor genes. These data indicate that NBNA yields rewarding effects, suggesting potential for abuse. Continual observation for the rise of related substances is thus strongly encouraged.
Amphetamine*
;
Animals
;
Controlled Substances
;
Humans
;
Mice
;
Parents
;
Rats
;
Receptors, Dopamine
;
Reward
;
Rodentia
8.The Abuse Potential of α-Piperidinopropiophenone (PIPP) and α-Piperidinopentiothiophenone (PIVT), Two New Synthetic Cathinones with Piperidine Ring Substituent.
Chrislean Jun BOTANAS ; Seong Shoon YOON ; June Bryan DE LA PEÑA ; Irene Joy DELA PEÑA ; Mikyung KIM ; Taeseon WOO ; Joung Wook SEO ; Choon Gon JANG ; Kyung Tae PARK ; Young Hun LEE ; Yong Sup LEE ; Hee Jin KIM ; Jae Hoon CHEONG
Biomolecules & Therapeutics 2017;25(2):122-129
A diversity of synthetic cathinones has flooded the recreational drug marketplace worldwide. This variety is often a response to legal control actions for one specific compound (e.g. methcathinone) which has resulted in the emergence of closely related replacement. Based on recent trends, the nitrogen atom is one of the sites in the cathinone molecule being explored by designer type modifications. In this study, we designed and synthesized two new synthetic cathinones, (1) α-piperidinopropiophenone (PIPP) and (2) α-piperidinopentiothiophenone (PIVT), which have piperidine ring substituent on their nitrogen atom. Thereafter, we evaluated whether these two compounds have an abuse potential through the conditioned place preference (CPP) in mice and self-administration (SA) in rats. We also investigated whether the substances can induce locomotor sensitization in mice following 7 days daily injection and challenge. qRT-PCR analyses were conducted to determine their effects on dopamine-related genes in the striatum. PIPP (10 and 30 mg/kg) induced CPP in mice, but not PIVT. However, both synthetic cathinones were not self-administered by the rats and did not induce locomotor sensitization in mice. qRT-PCR analyses showed that PIPP, but not PIVT, reduced dopamine transporter gene expression in the striatum. These data indicate that PIPP, but not PIVT, has rewarding effects, which may be attributed to its ability to affect dopamine transporter gene expression. Altogether, this study suggests that PIPP may have abuse potential. Careful monitoring of this type of cathinone and related drugs are advocated.
Animals
;
Dopamine Plasma Membrane Transport Proteins
;
Gene Expression
;
Mice
;
Nitrogen
;
Rats
;
Reward