1.Difference in Bonding Strength of RMGIC according to Type of Hemostatic Agent in Primary Tooth
Seolah BACK ; Joonhaeng LEE ; Jongbin KIM ; Miran HAN ; Jong Soo KIM
Journal of Korean Academy of Pediatric Dentistry 2021;48(4):460-466
The purpose of this study was to compare the effect of the hemostatic agent containing aluminum chloride with hemostatic agent containing ferric sulfate on the shear bond strength of resin-modified glass ionomer cement(RMGIC) to dentin in primary tooth.
Twenty extracted non-carious human primary teeth were collected in this study. The specimens were cut to expose dentin and polished. The specimens were randomly seperated into 3 groups for treatment; group I: polyacrylic acid(PAA), RMGIC; group II: aluminum chloride, PAA, RMGIC; group III: ferric sulfate, PAA, RMGIC
Ten specimens from each group were subjected to shear bond strength test.
The mean shear bond strength of each group was as follows: 10.07 ± 1.83 MPa in Group I, 7.62 ± 0.78 MPA in group II, 5.23 ± 0.78 MPa in group III. There were significant differences among all groups(p < 0.001).
In conclusion, both aluminum chloride hemostatic agent and ferric sulfate hemostatic agent decreased the shear bond strength of RMGIC to dentin. And ferric sulfate hemostatic agent decreased the shear bond strength of RMGIC more than the aluminium chloride hemostatic agent.
2.pH, Ion Release Capability, and Solubility Value of Premixed Mineral Trioxide Aggregates
Seolah BACK ; YuJi JANG ; Junghwan LEE ; Joonhaeng LEE ; Jisun SHIN ; Jongbin KIM ; Miran HAN ; JongSoo KIM
Journal of Korean Academy of Pediatric Dentistry 2022;49(4):379-391
The current study aimed to compare the pH, solubility value, and ion release capability of premixed mineral trioxide aggregates (MTAs) versus conventional pulp capping materials before and after setting. The following materials were used: resin-modified calcium silicate cement (TheraCal LC®, TLC), resin-modified calcium hydroxide cement (Ultra-BlendTM plus, UBP), and 2 kinds of premixed MTA (Endocem MTA® premixed regular 〔EMPR〕 and Well-RootTM PT 〔WRP〕). The specimens of each material were prepared before and after setting and were immersed in distilled water. The materials’ pH and solubility value were assessed. Next, three kinds of ion (calcium, sulfide, and strontium) released by pulp capping materials were evaluated via inductively coupled plasma atomic emission spectrometry. In the after-setting group, the pH of TLC and UBP decreased. However, the pH of the premixed MTAs increased with time. TLC released a higher concentration of strontium ion compared with the other materials. Meanwhile, EMPR released a significantly high concentration of sulfide ion (p < 0.05). In the after-setting group, the 2 kinds of premixed MTAs released a significantly higher concentration of calcium ion compared with the other materials (p < 0.05). In the after-setting group, EMPR had a significantly low solubility value (p < 0.05). The Kruskal-Wallis test, followed by the Mann-Whitney U test with Bonferroni correction, was used in statistical analysis. In conclusion, resin-modified calcium silicate cement, modified calcium hydroxide cement, and the 2 kinds of premixed MTAs had an alkaline pH and low solubility value and they released various concentrations of ions after setting.