1.Development of delayed thyroid stimulating hormone elevation in small-for-gestational-age infants: is a second screening needed?
Gahyun LEE ; So Yun PARK ; Jae Hyun PARK ; Seokjin KANG
Annals of Pediatric Endocrinology & Metabolism 2023;28(1):42-48
Purpose:
Recent reports indicate that small for gestational age (SGA) could be a risk factor for delayed thyroid stimulating hormone (dTSH) elevation in preterm infants. The development of dTSH elevation in SGA late-preterm infants with a gestational age of 34–36 weeks has been investigated in only a few studies.
Methods:
In the present retrospective study, 70 SGA infants and 86 sex- and gestational age-matched controls who presented with normal results on initial thyroid function testing were included.
Results:
SGA infants had a significantly higher prevalence of dTSH elevation (15.7% vs. 3.5%, P=0.009) compared with appropriate-for-gestational age infants. In SGA infants, the mean age at the time of dTSH was 24 days. Development of dTSH was associated with SGA and medical treatment with dopamine or furosemide. After adjusting for confounding factors, multiple logistic regression analysis showed SGA was a significant risk factor for the development of dTSH elevation (odds ratio, 23.2; 95% confidence interval, 2.27–236.91; P=0.008).
Conclusion
SGA infants may be at risk for dTSH and clinicians could consider a second thyroid screening test around the age of 1 month.
2.Margin-negative minimally invasive pancreatoduodenectomy following FOLFIRINOX neoadjuvant chemotherapy in invasive intraductal papillary mucinous neoplasm of pancreas: a case report
Jinho KIM ; Seokjin PARK ; Eunsang YIM ; Su Hyeong PARK ; Chang Moo KANG
Korean Journal of Clinical Oncology 2023;19(2):80-83
This study shows a case of neoadjuvant chemotherapy application for the management of a 34-year-old male patient diagnosed with invasive intraductal papillary mucinous neoplasm (IPMN), for which curative margin-negative resection initially seemed challenging. Five cycles of the FOLFIRINOX regimen (5-fluorouracil, leucovorin, irinotecan, and oxaliplatin) were administered preoperatively, resulting in a significant reduction of the intraductal mass size and deformity of the main vessels. The patient subsequently underwent a successful robotic pylorus-preserving pancreatoduodenectomy. Postoperatively, the patient received adjuvant chemotherapy with FOLFIRINOX, and after 5 months, showed no signs of tumor recurrence or specific complications. These findings suggest that neoadjuvant therapy can be a potentially effective strategy even in advanced invasive IPMN. Further research is necessary to establish guidelines for its application.
3.COVID-19 in a 16-Year-Old Adolescent With Mucopolysaccharidosis Type II:Case Report and Review of Literature
So Yun PARK ; Heung Sik KIM ; Mi Ae CHU ; Myeong-Hee CHUNG ; Seokjin KANG
Pediatric Infection & Vaccine 2022;29(2):70-76
Coronavirus disease 2019 (COVID-19) in patients with underlying diseases, is associated with high infection and mortality rates, which may result in acute respiratory distress syndrome and death. Mucopolysaccharidosis (MPS) type II is a progressive metabolic disorder that stems from cellular accumulation of the glycosaminoglycans, heparan, and dermatan sulfate. Upper and lower airway obstruction and restrictive pulmonary diseases are common complaints of patients with MPS, and respiratory infections of bacterial or viral origin could result in fatal outcomes. We report a case of COVID-19 in a 16-year-old adolescent with MPS type II, who had been treated with idursulfase since 5 years of age. Prior to infection, the patient’s clinical history included developmental delays, abdominal distension, snoring, and facial dysmorphism. His primary complaints at the time of admission included rhinorrhea, cough, and sputum without fever or increased oxygen demand. His heart rate, respiratory rate, and oxygen saturation were within the normal biological reference intervals, and chest radiography revealed no signs of pneumonia. Consequently, supportive therapy and quarantine were recommended. The patient experienced an uneventful course of COVID-19 despite underlying MPS type II, which may be the result of an unfavorable host cell environment and changes in expression patterns of proteins involved in interactions with viral proteins. Moreover, elevated serum heparan sulfate in patients with MPS may compete with cell surface heparan sulfate, which is essential for successful interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the host cell surface, thereby protecting against intracellular penetration by SARS-CoV-2.
4.A novel variant of THRβ and its 4-year clinical course in a Korean boy with resistance to thyroid hormone
Sejin KIM ; Soyun PARK ; Jungeun MOON ; Heungsik KIM ; Seokjin KANG
Annals of Pediatric Endocrinology & Metabolism 2023;28(3):219-224
Thyroid hormone resistance (RTH) is characterized by a decreased sensitivity of target tissues to thyroid hormones due to a defect in the THRα- and THRβ-encoded thyroid hormone receptors (THRs). The clinical manifestations range from no symptoms to simple goiter and hypo- or hyperthyroidism, depending on the receptor subtype distribution in the tissues. Here, we report the case of a thyroid hormone-resistant 12-month-old boy carrying a novel THRβ variant who was initially diagnosed with congenital hypothyroidism. An extensive evaluation revealed increased free T4 level and inappropriately increased thyroid-stimulating hormone (TSH) level; a normal lipid profile, sex hormone-binding globulin, and free alpha subunit of TSH; exaggerated TSH response to THR; and no radiological evidence of pituitary adenoma. A targeted next-generation sequencing panel identified a heterozygote c.993T>G (p.Asn331Lys) mutation in the THRβ gene. During the first year of life, a higher dose of levothyroxine was administered to the patient due to uncompensated RTH. Levothyroxine treatment was continued after 3 years to maintain TSH level <5 mIU/mL, but the observed weight gain was poor, height increase was insufficient, and bone development was delayed. However, neither hyperactivity nor developmental delay was observed. Patients with RTH exhibit various clinical features. Due to its heterogeneous nature, genetic test for accurate diagnosis is important to provide proper management.
5.Characterization of the fecal microbiota differs between age groups in Koreans.
Sun Young KOOK ; Yunjeong KIM ; Ben KANG ; Yon Ho CHOE ; Young Ho KIM ; Seokjin KIM
Intestinal Research 2018;16(2):246-254
BACKGROUND/AIMS: Tens of trillions of microorganisms constitute the gut microbiota of the human body. The microbiota plays a critical role in maintaining host immunity and metabolism. Analyses of the gut microbial composition in Korea are limited to a few studies consisting of small sample sizes. To investigate the gut microbial community in a large sample of healthy Koreans, we analyzed the 16S ribosomal RNA of 4 representative bacterial genera Lactobacillus, Bifidobacterium, Bacteroides, and Clostridium. METHODS: A total of 378 DNA samples extracted from 164 infants and 214 adults were analyzed using quantitative real-time polymerase chain reaction. RESULTS: Analysis of 16S ribosomal RNA of 4 representative bacterial genera Lactobacillus, Bifidobacterium, Bacteroides, and Clostridium showed that the gut microbiota in infants had higher relative abundances of Bifidobacterium and Lactobacillus than that in adults, which was dominated by Bacteroides and Clostridium. CONCLUSIONS: To the best of our knowledge, this was the first study evaluating the distinct characteristics of the microbial community of Korean infants and adults. The differences between the 2 populations suggest that external factors such as age, diet, and the environment are important contributing factors to the change in gut microbial composition during development.
Adult
;
Bacteroides
;
Bifidobacterium
;
Clostridium
;
Diet
;
DNA
;
Gastrointestinal Microbiome
;
Human Body
;
Humans
;
Infant
;
Korea
;
Lactobacillus
;
Metabolism
;
Microbiota*
;
Real-Time Polymerase Chain Reaction
;
RNA, Ribosomal, 16S
;
Sample Size
;
Transcutaneous Electric Nerve Stimulation
6.Bioinformatics services for analyzing massive genomic datasets
Gunhwan KO ; Pan-Gyu KIM ; Youngbum CHO ; Seongmun JEONG ; Jae-Yoon KIM ; Kyoung Hyoun KIM ; Ho-Yeon LEE ; Jiyeon HAN ; Namhee YU ; Seokjin HAM ; Insoon JANG ; Byunghee KANG ; Sunguk SHIN ; Lian KIM ; Seung-Won LEE ; Dougu NAM ; Jihyun F. KIM ; Namshin KIM ; Seon-Young KIM ; Sanghyuk LEE ; Tae-Young ROH ; Byungwook LEE
Genomics & Informatics 2020;18(1):e8-
The explosive growth of next-generation sequencing data has resulted in ultra-large-scale datasets and ensuing computational problems. In Korea, the amount of genomic data has been increasing rapidly in the recent years. Leveraging these big data requires researchers to use large-scale computational resources and analysis pipelines. A promising solution for addressing this computational challenge is cloud computing, where CPUs, memory, storage, and programs are accessible in the form of virtual machines. Here, we present a cloud computing-based system, Bio-Express, that provides user-friendly, cost-effective analysis of massive genomic datasets. Bio-Express is loaded with predefined multi-omics data analysis pipelines, which are divided into genome, transcriptome, epigenome, and metagenome pipelines. Users can employ predefined pipelines or create a new pipeline for analyzing their own omics data. We also developed several web-based services for facilitating downstream analysis of genome data. Bio-Express web service is freely available at https://www.bioexpress.re.kr/.
7.Bioinformatics services for analyzing massive genomic datasets
Gunhwan KO ; Pan-Gyu KIM ; Youngbum CHO ; Seongmun JEONG ; Jae-Yoon KIM ; Kyoung Hyoun KIM ; Ho-Yeon LEE ; Jiyeon HAN ; Namhee YU ; Seokjin HAM ; Insoon JANG ; Byunghee KANG ; Sunguk SHIN ; Lian KIM ; Seung-Won LEE ; Dougu NAM ; Jihyun F. KIM ; Namshin KIM ; Seon-Young KIM ; Sanghyuk LEE ; Tae-Young ROH ; Byungwook LEE
Genomics & Informatics 2020;18(1):e8-
The explosive growth of next-generation sequencing data has resulted in ultra-large-scale datasets and ensuing computational problems. In Korea, the amount of genomic data has been increasing rapidly in the recent years. Leveraging these big data requires researchers to use large-scale computational resources and analysis pipelines. A promising solution for addressing this computational challenge is cloud computing, where CPUs, memory, storage, and programs are accessible in the form of virtual machines. Here, we present a cloud computing-based system, Bio-Express, that provides user-friendly, cost-effective analysis of massive genomic datasets. Bio-Express is loaded with predefined multi-omics data analysis pipelines, which are divided into genome, transcriptome, epigenome, and metagenome pipelines. Users can employ predefined pipelines or create a new pipeline for analyzing their own omics data. We also developed several web-based services for facilitating downstream analysis of genome data. Bio-Express web service is freely available at https://www.bioexpress.re.kr/.