1.Advances, challenges, and prospects of electroencephalography-based biomarkers for psychiatric disorders: a narrative review
Journal of Yeungnam Medical Science 2024;41(4):261-268
Owing to a lack of appropriate biomarkers for accurate diagnosis and treatment, psychiatric disorders cause significant distress and functional impairment, leading to social and economic losses. Biomarkers are essential for diagnosing, predicting, treating, and monitoring various diseases. However, their absence in psychiatry is linked to the complex structure of the brain and the lack of direct monitoring modalities. This review examines the potential of electroencephalography (EEG) as a neurophysiological tool for identifying psychiatric biomarkers. EEG noninvasively measures brain electrophysiological activity and is used to diagnose neurological disorders, such as depression, bipolar disorder (BD), and schizophrenia, and identify psychiatric biomarkers. Despite extensive research, EEG-based biomarkers have not been clinically utilized owing to measurement and analysis constraints. EEG studies have revealed spectral and complexity measures for depression, brainwave abnormalities in BD, and power spectral abnormalities in schizophrenia. However, no EEG-based biomarkers are currently used clinically for the treatment of psychiatric disorders. The advantages of EEG include real-time data acquisition, noninvasiveness, cost-effectiveness, and high temporal resolution. Challenges such as low spatial resolution, susceptibility to interference, and complexity of data interpretation limit its clinical application. Integrating EEG with other neuroimaging techniques, advanced signal processing, and standardized protocols is essential to overcome these limitations. Artificial intelligence may enhance EEG analysis and biomarker discovery, potentially transforming psychiatric care by providing early diagnosis, personalized treatment, and improved disease progression monitoring.
2.Advances, challenges, and prospects of electroencephalography-based biomarkers for psychiatric disorders: a narrative review
Journal of Yeungnam Medical Science 2024;41(4):261-268
Owing to a lack of appropriate biomarkers for accurate diagnosis and treatment, psychiatric disorders cause significant distress and functional impairment, leading to social and economic losses. Biomarkers are essential for diagnosing, predicting, treating, and monitoring various diseases. However, their absence in psychiatry is linked to the complex structure of the brain and the lack of direct monitoring modalities. This review examines the potential of electroencephalography (EEG) as a neurophysiological tool for identifying psychiatric biomarkers. EEG noninvasively measures brain electrophysiological activity and is used to diagnose neurological disorders, such as depression, bipolar disorder (BD), and schizophrenia, and identify psychiatric biomarkers. Despite extensive research, EEG-based biomarkers have not been clinically utilized owing to measurement and analysis constraints. EEG studies have revealed spectral and complexity measures for depression, brainwave abnormalities in BD, and power spectral abnormalities in schizophrenia. However, no EEG-based biomarkers are currently used clinically for the treatment of psychiatric disorders. The advantages of EEG include real-time data acquisition, noninvasiveness, cost-effectiveness, and high temporal resolution. Challenges such as low spatial resolution, susceptibility to interference, and complexity of data interpretation limit its clinical application. Integrating EEG with other neuroimaging techniques, advanced signal processing, and standardized protocols is essential to overcome these limitations. Artificial intelligence may enhance EEG analysis and biomarker discovery, potentially transforming psychiatric care by providing early diagnosis, personalized treatment, and improved disease progression monitoring.
3.Advances, challenges, and prospects of electroencephalography-based biomarkers for psychiatric disorders: a narrative review
Journal of Yeungnam Medical Science 2024;41(4):261-268
Owing to a lack of appropriate biomarkers for accurate diagnosis and treatment, psychiatric disorders cause significant distress and functional impairment, leading to social and economic losses. Biomarkers are essential for diagnosing, predicting, treating, and monitoring various diseases. However, their absence in psychiatry is linked to the complex structure of the brain and the lack of direct monitoring modalities. This review examines the potential of electroencephalography (EEG) as a neurophysiological tool for identifying psychiatric biomarkers. EEG noninvasively measures brain electrophysiological activity and is used to diagnose neurological disorders, such as depression, bipolar disorder (BD), and schizophrenia, and identify psychiatric biomarkers. Despite extensive research, EEG-based biomarkers have not been clinically utilized owing to measurement and analysis constraints. EEG studies have revealed spectral and complexity measures for depression, brainwave abnormalities in BD, and power spectral abnormalities in schizophrenia. However, no EEG-based biomarkers are currently used clinically for the treatment of psychiatric disorders. The advantages of EEG include real-time data acquisition, noninvasiveness, cost-effectiveness, and high temporal resolution. Challenges such as low spatial resolution, susceptibility to interference, and complexity of data interpretation limit its clinical application. Integrating EEG with other neuroimaging techniques, advanced signal processing, and standardized protocols is essential to overcome these limitations. Artificial intelligence may enhance EEG analysis and biomarker discovery, potentially transforming psychiatric care by providing early diagnosis, personalized treatment, and improved disease progression monitoring.
4.Advances, challenges, and prospects of electroencephalography-based biomarkers for psychiatric disorders: a narrative review
Journal of Yeungnam Medical Science 2024;41(4):261-268
Owing to a lack of appropriate biomarkers for accurate diagnosis and treatment, psychiatric disorders cause significant distress and functional impairment, leading to social and economic losses. Biomarkers are essential for diagnosing, predicting, treating, and monitoring various diseases. However, their absence in psychiatry is linked to the complex structure of the brain and the lack of direct monitoring modalities. This review examines the potential of electroencephalography (EEG) as a neurophysiological tool for identifying psychiatric biomarkers. EEG noninvasively measures brain electrophysiological activity and is used to diagnose neurological disorders, such as depression, bipolar disorder (BD), and schizophrenia, and identify psychiatric biomarkers. Despite extensive research, EEG-based biomarkers have not been clinically utilized owing to measurement and analysis constraints. EEG studies have revealed spectral and complexity measures for depression, brainwave abnormalities in BD, and power spectral abnormalities in schizophrenia. However, no EEG-based biomarkers are currently used clinically for the treatment of psychiatric disorders. The advantages of EEG include real-time data acquisition, noninvasiveness, cost-effectiveness, and high temporal resolution. Challenges such as low spatial resolution, susceptibility to interference, and complexity of data interpretation limit its clinical application. Integrating EEG with other neuroimaging techniques, advanced signal processing, and standardized protocols is essential to overcome these limitations. Artificial intelligence may enhance EEG analysis and biomarker discovery, potentially transforming psychiatric care by providing early diagnosis, personalized treatment, and improved disease progression monitoring.
5.Long-Term Outcomes of Hemispheric Disconnection in Pediatric Patients with Intractable Epilepsy.
Yun Jeong LEE ; Eun Hee KIM ; Mi Sun YUM ; Jung Kyo LEE ; Seokho HONG ; Tae Sung KO
Journal of Clinical Neurology 2014;10(2):101-107
BACKGROUND AND PURPOSE: Hemispherectomy reportedly produces remarkable results in terms of seizure outcome and quality of life for medically intractable hemispheric epilepsy in children. We reviewed the neuroradiologic findings, pathologic findings, epilepsy characteristics, and clinical long-term outcomes in pediatric patients following a hemispheric disconnection. METHODS: We retrospectively studied 12 children (8 males) who underwent a hemispherectomy at Asan Medical Center between 1997 and 2005. Clinical, EEG, neuroradiological, and surgical data were collected. Long-term outcomes for seizure, motor functions, and cognitive functions were evaluated at a mean follow-up of 12.7 years (range, 7.6-16.2 years) after surgery. RESULTS: The mean age at epilepsy onset was 3.0 years (range, 0-7.6 years). The following epilepsy syndromes were identified in our cohort: focal symptomatic epilepsy (n=8), West syndrome (n=3), and Rasmussen's syndrome (n=1). Postoperative histopathology of our study patients revealed malformation of cortical development (n=7), encephalomalacia as a sequela of infarction or trauma (n=3), Sturge-Weber syndrome (n=1), and Rasmussen's encephalitis (n=1). The mean age at surgery was 6.5 years (range, 0.8-12.3 years). Anatomical or functional hemispherectomy was performed in 8 patients, and hemispherotomy was performed in 4 patients. Eight of our 12 children (66.7%) were seizure-free, but 3 patients with perioperative complications showed persistent seizure. Although all patients had preoperative hemiparesis and developmental delay, none had additional motor or cognitive deficits after surgery, and most achieved independent walking and improvement in daily activities. CONCLUSIONS: The long-term clinical outcomes of hemispherectomy in children with intractable hemispheric epilepsy are good when careful patient selection and skilled surgical approaches are applied.
Child
;
Chungcheongnam-do
;
Cohort Studies
;
Electroencephalography
;
Encephalitis
;
Encephalomalacia
;
Epilepsy*
;
Follow-Up Studies
;
Hemispherectomy
;
Humans
;
Infant
;
Infant, Newborn
;
Infarction
;
Paresis
;
Patient Selection
;
Quality of Life
;
Retrospective Studies
;
Seizures
;
Spasms, Infantile
;
Sturge-Weber Syndrome
;
Walking
6.Using Deep Learning Techniques as an Attempt to Create the Most Cost-Effective Screening Tool for Cognitive Decline
Hye-Geum KIM ; Wan-Seok SEO ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; Sohye JO ; Byoungyoung GU
Psychiatry Investigation 2024;21(8):912-917
Objective:
This study aimed to use deep learning (DL) to develop a cost-effective and accessible screening tool to improve the detection of cognitive decline, a precursor of Alzheimer’s disease (AD). This study integrating a comprehensive battery of neuropsychological tests adjusted for individual demographic variables such as age, sex, and education level.
Methods:
A total of 2,863 subjects with subjective cognitive complaints who underwent a comprehensive neuropsychological assessment were included. A random forest classifier was used to discern the most predictive test combinations to distinguish between dementia and nondementia cases. The model was trained and validated on this dataset, focusing on feature importance to determine the cognitive tests that were most indicative of decline.
Results:
Subjects had a mean age of 72.68 years and an average education level of 7.62 years. The DL model achieved an accuracy of 82.42% and an area under the curve of 0.816, effectively classifying dementia. Feature importance analysis identified significant tests across cognitive domains: attention was gauged by the Trail Making Test Part B, language by the Boston Naming Test, memory by the Rey Complex Figure Test delayed recall, visuospatial skills by the Rey Complex Figure Test copy score, and frontal function by the Stroop Test Word reading time.
Conclusion
This study showed the potential of DL to improve AD diagnostics, suggesting that a wide range of cognitive assessments could yield a more accurate diagnosis than traditional methods. This research establishes a foundation for future broader studies, which could substantiate the approach and further refine the screening tool.
7.The Complexity of Borderline Personality Disorder: Network Analysis of Personality Factors and Defense Styles in the Context of Borderline Personality Organization
Seokho YUN ; So-Hye JO ; Hye-Jin JEON ; Hye-Geum KIM ; Eun-Jin CHEON ; Bon-Hoon KOO
Psychiatry Investigation 2024;21(6):672-679
Objective:
Borderline personality disorder (BPD) is known to share characteristics with a variety of personality disorders (PDs) and exhibits diverse patterns of defense mechanisms. To enhance our understanding of BPD, it’s crucial to shift our focus from traditional categorical diagnostics to the dimensional traits shared with other PDs, as the borderline personality organization (BPO) model suggests. This approach illuminates the nuanced spectrum of BPD characteristics, offering deeper insights into its complexity. While studies have investigated the comorbidity of BPD with other PDs, research exploring the relationship between various personality factors and defense mechanisms within BPD itself has been scarce. The present study was undertaken to investigate the complex interrelationships between various personality factors and defense styles in individuals diagnosed with BPD.
Methods:
Using a network analysis approach, data from 227 patients diagnosed with BPD were examined using the Defense Style Questionnaire and Personality Disorder Questionnaire-4+ for assessment.
Results:
Intricate connections were observed between personality factors and defense styles. Significant associations were identified between various personality factors and defense styles, with immature defense styles, such as maladaptive and image-distorting being particularly prominent in BPD in the centrality analysis. The maladaptive defense style had the highest expected influence centrality. Furthermore, the schizotypal, dependent, and narcissistic personality factors demonstrated relatively high centrality within the network.
Conclusion
Network analysis can effectively delineate the complexity of various PDs and defense styles. These findings are expected to facilitate a deeper understanding of why BPD exhibits various levels of organization and presents with heterogeneous characteristics, consistent with the perspectives proposed by the BPO.
8.Using Deep Learning Techniques as an Attempt to Create the Most Cost-Effective Screening Tool for Cognitive Decline
Hye-Geum KIM ; Wan-Seok SEO ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; Sohye JO ; Byoungyoung GU
Psychiatry Investigation 2024;21(8):912-917
Objective:
This study aimed to use deep learning (DL) to develop a cost-effective and accessible screening tool to improve the detection of cognitive decline, a precursor of Alzheimer’s disease (AD). This study integrating a comprehensive battery of neuropsychological tests adjusted for individual demographic variables such as age, sex, and education level.
Methods:
A total of 2,863 subjects with subjective cognitive complaints who underwent a comprehensive neuropsychological assessment were included. A random forest classifier was used to discern the most predictive test combinations to distinguish between dementia and nondementia cases. The model was trained and validated on this dataset, focusing on feature importance to determine the cognitive tests that were most indicative of decline.
Results:
Subjects had a mean age of 72.68 years and an average education level of 7.62 years. The DL model achieved an accuracy of 82.42% and an area under the curve of 0.816, effectively classifying dementia. Feature importance analysis identified significant tests across cognitive domains: attention was gauged by the Trail Making Test Part B, language by the Boston Naming Test, memory by the Rey Complex Figure Test delayed recall, visuospatial skills by the Rey Complex Figure Test copy score, and frontal function by the Stroop Test Word reading time.
Conclusion
This study showed the potential of DL to improve AD diagnostics, suggesting that a wide range of cognitive assessments could yield a more accurate diagnosis than traditional methods. This research establishes a foundation for future broader studies, which could substantiate the approach and further refine the screening tool.
9.Using Deep Learning Techniques as an Attempt to Create the Most Cost-Effective Screening Tool for Cognitive Decline
Hye-Geum KIM ; Wan-Seok SEO ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; Sohye JO ; Byoungyoung GU
Psychiatry Investigation 2024;21(8):912-917
Objective:
This study aimed to use deep learning (DL) to develop a cost-effective and accessible screening tool to improve the detection of cognitive decline, a precursor of Alzheimer’s disease (AD). This study integrating a comprehensive battery of neuropsychological tests adjusted for individual demographic variables such as age, sex, and education level.
Methods:
A total of 2,863 subjects with subjective cognitive complaints who underwent a comprehensive neuropsychological assessment were included. A random forest classifier was used to discern the most predictive test combinations to distinguish between dementia and nondementia cases. The model was trained and validated on this dataset, focusing on feature importance to determine the cognitive tests that were most indicative of decline.
Results:
Subjects had a mean age of 72.68 years and an average education level of 7.62 years. The DL model achieved an accuracy of 82.42% and an area under the curve of 0.816, effectively classifying dementia. Feature importance analysis identified significant tests across cognitive domains: attention was gauged by the Trail Making Test Part B, language by the Boston Naming Test, memory by the Rey Complex Figure Test delayed recall, visuospatial skills by the Rey Complex Figure Test copy score, and frontal function by the Stroop Test Word reading time.
Conclusion
This study showed the potential of DL to improve AD diagnostics, suggesting that a wide range of cognitive assessments could yield a more accurate diagnosis than traditional methods. This research establishes a foundation for future broader studies, which could substantiate the approach and further refine the screening tool.
10.Using Deep Learning Techniques as an Attempt to Create the Most Cost-Effective Screening Tool for Cognitive Decline
Hye-Geum KIM ; Wan-Seok SEO ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; Sohye JO ; Byoungyoung GU
Psychiatry Investigation 2024;21(8):912-917
Objective:
This study aimed to use deep learning (DL) to develop a cost-effective and accessible screening tool to improve the detection of cognitive decline, a precursor of Alzheimer’s disease (AD). This study integrating a comprehensive battery of neuropsychological tests adjusted for individual demographic variables such as age, sex, and education level.
Methods:
A total of 2,863 subjects with subjective cognitive complaints who underwent a comprehensive neuropsychological assessment were included. A random forest classifier was used to discern the most predictive test combinations to distinguish between dementia and nondementia cases. The model was trained and validated on this dataset, focusing on feature importance to determine the cognitive tests that were most indicative of decline.
Results:
Subjects had a mean age of 72.68 years and an average education level of 7.62 years. The DL model achieved an accuracy of 82.42% and an area under the curve of 0.816, effectively classifying dementia. Feature importance analysis identified significant tests across cognitive domains: attention was gauged by the Trail Making Test Part B, language by the Boston Naming Test, memory by the Rey Complex Figure Test delayed recall, visuospatial skills by the Rey Complex Figure Test copy score, and frontal function by the Stroop Test Word reading time.
Conclusion
This study showed the potential of DL to improve AD diagnostics, suggesting that a wide range of cognitive assessments could yield a more accurate diagnosis than traditional methods. This research establishes a foundation for future broader studies, which could substantiate the approach and further refine the screening tool.