1.Delayed covering causes the accumulation of motile sperm, leading to overestimation of sperm concentration and motility with a Makler counting chamber.
Lin YU ; Qing-Yuan CHENG ; Ye-Lin JIA ; Yan ZHENG ; Ting-Ting YANG ; Ying-Bi WU ; Fu-Ping LI
Asian Journal of Andrology 2025;27(1):59-64
According to the World Health Organization (WHO) manual, sperm concentration should be measured using an improved Neubauer hemocytometer, while sperm motility should be measured by manual assessment. However, in China, thousands of laboratories do not use the improved Neubauer hemocytometer or method; instead, the Makler counting chamber is one of the most widely used chambers. To study sources of error that could impact the measurement of the apparent concentration and motility of sperm using the Makler counting chamber and to verify its accuracy for clinical application, 67 semen samples from patients attending the Department of Andrology, West China Second University Hospital, Sichuan University (Chengdu, China) between 13 September 2023 and 27 September 2023, were included. Compared with applying the cover glass immediately, delaying the application of the cover glass for 5 s, 10 s, and 30 s resulted in average increases in the sperm concentration of 30.3%, 74.1%, and 107.5%, respectively (all P < 0.0001) and in the progressive motility (PR) of 17.7%, 30.8%, and 39.6%, respectively (all P < 0.0001). However, when the semen specimens were fixed with formaldehyde, a delay in the application of the cover glass for 5 s, 10 s, and 30 s resulted in an average increase in the sperm concentration of 6.7%, 10.8%, and 14.6%, respectively, compared with immediate application of the cover glass. The accumulation of motile sperm due to delays in the application of the cover glass is a significant source of error with the Makler counting chamber and should be avoided.
Humans
;
Male
;
Sperm Motility/physiology*
;
Sperm Count
;
Semen Analysis/methods*
;
Spermatozoa/physiology*
;
Time Factors
2.Study on the influence of the sY1192 gene locus in the AZFb/c region on sperm quality and pregnancy outcome.
Gang-Xin CHEN ; Yan SUN ; Rui YANG ; Zhi-Qing HUANG ; Hai-Yan LI ; Bei-Hong ZHENG
Asian Journal of Andrology 2025;27(2):231-238
Y chromosome microdeletions are an important cause of male infertility. At present, research on the Y chromosome is mainly focused on analyzing the loss of large segments of the azoospermia factor a/b/c (AZFa/b/c) gene, and few studies have reported the impact of unit point deletion in the AZF band on fertility. This study analyzed the effect of sperm quality after sY1192 loss in 116 patients. The sY1192-independent deletion accounted for 41.4% (48/116). Eight patterns were found in the deletions associated with sY1192. The rate of sperm detection was similar in the semen of patients with the independent sY1192 deletion and the combined sY1192 deletions (52.1% vs 50.0%). The patients with only sY1192 gene loss had a higher probability of sperm detection than the patients whose sY1192 gene locus existed, but other gene loci were lost (52.1% vs 32.0%). The hormone levels were similar in patients with sY1192 deletion alone and in those with sY1192 deletion and other types of microdeletions in the presence of the sY1192 locus. After multiple intracytoplasmic sperm injection (ICSI) attempts, the pregnancy rate of spouses of men with sY1192-independent deletions was similar to that of other types of microdeletions, but the fertilization and cleavage rates were higher. We observed that eight deletion patterns were observed for sY1192 microdeletions of AZFb/c, dominated by the independent deletion of sY1192. After ICSI, the fertilization rate and cleavage rate of the sY1192-independent microdeletion were higher than those of other Y chromosome microdeletion types, but there was no significant difference in pregnancy outcomes.
Humans
;
Female
;
Pregnancy
;
Male
;
Chromosomes, Human, Y/genetics*
;
Adult
;
Chromosome Deletion
;
Pregnancy Outcome/genetics*
;
Infertility, Male/genetics*
;
Spermatozoa/physiology*
;
Semen Analysis
;
Sex Chromosome Disorders of Sex Development/genetics*
;
Sperm Injections, Intracytoplasmic
;
Azoospermia/genetics*
;
Sex Chromosome Aberrations
3.Impact of physical activity on semen quality: a review of current evidence.
Jing CHEN ; Jin-Ming GUO ; Bang-Jian JIANG ; Fan-Yuan SUN ; Yong-Cun QU
Asian Journal of Andrology 2025;27(5):574-580
A growing global trend indicates a decline in semen quality, with a lack of physical activity identified as one of the contributing factors. Exercise is medication, and numerous studies have explored its effects on semen quality. However, there is no consensus on the most effective type and intensity of exercise for improving semen quality, owing to inconsistent findings across studies. These discrepancies may be attributable to variations in study populations ( e.g. , healthy versus infertile individuals) and research methodologies ( e.g., observational versus interventional studies). This paper reviews the existing literature from the databases PubMed, Web of Science, and Google Scholar, reclassifying articles on their subject and research designs to delineate the relationship between exercise and semen quality. It also summarizes the mechanisms through which exercise influences semen quality, including hormonal regulation, oxidative stress, and inflammatory factors.
Humans
;
Semen Analysis
;
Male
;
Exercise/physiology*
;
Oxidative Stress/physiology*
;
Infertility, Male/physiopathology*
;
Sperm Motility/physiology*
4.Sperm tRNA-derived fragments expression is potentially linked to abstinence-related improvement of sperm quality.
Xi-Ren JI ; Rui-Jun WANG ; Zeng-Hui HUANG ; Hui-Lan WU ; Xiu-Hai HUANG ; Hao BO ; Ge LIN ; Wen-Bing ZHU ; Chuan HUANG
Asian Journal of Andrology 2025;27(5):638-645
Recent studies have shown that shorter periods of ejaculatory abstinence may enhance certain sperm parameters, but the molecular mechanisms underlying these improvements are still unclear. This study explored whether reduced abstinence periods could improve semen quality, particularly for use in assisted reproductive technologies (ART). We analyzed semen samples from men with normal sperm counts ( n = 101) and those with low sperm motility or concentration ( n = 53) after 3-7 days of abstinence and then after 1-3 h of abstinence, obtained from the Reproductive & Genetic Hospital of CITIC-Xiangya (Changsha, China). Physiological and biochemical sperm parameters were evaluated, and the dynamics of transfer RNA (tRNA)-derived fragments (tRFs) were analyzed using deep RNA sequencing in five consecutive samples from men with normal sperm counts. Our results revealed significant improvement in sperm motility and a decrease in the DNA fragmentation index after the 1- to 3-h abstinence period. Additionally, we identified 245 differentially expressed tRFs, and the mitogen-activated protein kinase (MAPK) signaling pathway was the most enriched. Further investigations showed significant changes in tRF-Lys-TTT and its target gene mitogen-activated protein kinase kinase 2 ( MAP2K2 ), which indicates a role of tRFs in improving sperm function. These findings provide new insights into how shorter abstinence periods influence sperm quality and suggest that tRFs may serve as biomarkers for male fertility. This research highlights the potential for optimizing ART protocols and improving reproductive outcomes through molecular approaches that target sperm function.
Male
;
Humans
;
Spermatozoa/metabolism*
;
RNA, Transfer/genetics*
;
Sperm Motility/genetics*
;
Adult
;
Semen Analysis
;
Sexual Abstinence/physiology*
;
Sperm Count
;
DNA Fragmentation
5.Effects of Hot Night Exposure on Human Semen Quality: A Multicenter Population-Based Study.
Ting Ting DAI ; Ting XU ; Qi Ling WANG ; Hao Bo NI ; Chun Ying SONG ; Yu Shan LI ; Fu Ping LI ; Tian Qing MENG ; Hui Qiang SHENG ; Ling Xi WANG ; Xiao Yan CAI ; Li Na XIAO ; Xiao Lin YU ; Qing Hui ZENG ; Pi GUO ; Xin Zong ZHANG
Biomedical and Environmental Sciences 2025;38(2):178-193
OBJECTIVE:
To explore and quantify the association of hot night exposure during the sperm development period (0-90 lag days) with semen quality.
METHODS:
A total of 6,640 male sperm donors from 6 human sperm banks in China during 2014-2020 were recruited in this multicenter study. Two indices (i.e., hot night excess [HNE] and hot night duration [HND]) were used to estimate the heat intensity and duration during nighttime. Linear mixed models were used to examine the association between hot nights and semen quality parameters.
RESULTS:
The exposure-response relationship revealed that HNE and HND during 0-90 days before semen collection had a significantly inverse association with sperm motility. Specifically, a 1 °C increase in HNE was associated with decreased sperm progressive motility of 0.0090 (95% confidence interval [ CI]: -0.0147, -0.0033) and decreased total motility of 0.0094 (95% CI: -0.0160, -0.0029). HND was significantly associated with reduced sperm progressive motility and total motility of 0.0021 (95% CI: -0.0040, -0.0003) and 0.0023 (95% CI: -0.0043, -0.0002), respectively. Consistent results were observed at different temperature thresholds on hot nights.
CONCLUSION
Our findings highlight the need to mitigate nocturnal heat exposure during spermatogenesis to maintain optimal semen quality.
Humans
;
Male
;
Semen Analysis
;
Adult
;
Sperm Motility
;
Hot Temperature/adverse effects*
;
China
;
Middle Aged
;
Spermatozoa/physiology*
;
Young Adult
6.Semen parameters in men recovered from COVID-19.
Tong-Hang GUO ; Mei-Ying SANG ; Shun BAI ; Hui MA ; Yang-Yang WAN ; Xiao-Hua JIANG ; Yuan-Wei ZHANG ; Bo XU ; Hong CHEN ; Xue-Ying ZHENG ; Si-Hui LUO ; Xue-Feng XIE ; Chen-Jia GONG ; Jian-Ping WENG ; Qing-Hua SHI
Asian Journal of Andrology 2021;23(5):479-483
The novel coronavirus disease (COVID-19) pandemic is emerging as a global health threat and shows a higher risk for men than women. Thus far, the studies on andrological consequences of COVID-19 are limited. To ascertain the consequences of COVID-19 on sperm parameters after recovery, we recruited 41 reproductive-aged male patients who had recovered from COVID-19, and analyzed their semen parameters and serum sex hormones at a median time of 56 days after hospital discharge. For longitudinal analysis, a second sampling was obtained from 22 of the 41 patients after a median time interval of 29 days from first sampling. Compared with controls who had not suffered from COVID-19, the total sperm count, sperm concentration, and percentages of motile and progressively motile spermatozoa in the patients were significantly lower at first sampling, while sperm vitality and morphology were not affected. The total sperm count, sperm concentration, and number of motile spermatozoa per ejaculate were significantly increased and the percentage of morphologically abnormal sperm was reduced at the second sampling compared with those at first in the 22 patients examined. Though there were higher prolactin and lower progesterone levels in patients at first sampling than those in controls, no significant alterations were detected for any sex hormones examined over time following COVID-19 recovery in the 22 patients. Although it should be interpreted carefully, these findings indicate an adverse but potentially reversible consequence of COVID-19 on sperm quality.
Adult
;
Asthenozoospermia/virology*
;
COVID-19/physiopathology*
;
China
;
Gonadal Steroid Hormones/blood*
;
Humans
;
Male
;
Progesterone/blood*
;
Prolactin/blood*
;
SARS-CoV-2
;
Semen/physiology*
;
Semen Analysis
;
Sperm Count
;
Sperm Motility
;
Spermatozoa/physiology*
;
Time Factors
7.The effect of vitamin D on sperm motility and the underlying mechanism.
Kadiliya JUERAITETIBAIKE ; Zheng DING ; Dan-Dan WANG ; Long-Ping PENG ; Jun JING ; Li CHEN ; Xie GE ; Xu-Hua QIU ; Bing YAO
Asian Journal of Andrology 2019;21(4):400-407
Vitamin D deficiency is a common health issue around the world. We therefore evaluated the associations of semen quality with both serum and seminal plasma vitamin D levels and studied the mechanisms underlying these by incubating spermatozoa with 1,25(OH)2D In vitro. Two hundred and twenty-two men were included in our study. Vitamin D was detected using an electrochemiluminescence method. Spermatozoa used for In vitro experiments were isolated by density gradient centrifugation. Positive relationships of serum 25(OH)D with semen volume and seminal plasma fructose were identified. Seminal plasma 25(OH)D level showed no relationship with serum 25(OH)D level, while it was inversely associated with sperm concentration and positively correlated with semen volume and sperm kinetic values. In vitro, sperm kinetic parameters increased after incubation with 1,25(OH)2D, especially upon incubation for 30 min with it at a concentration of 0.1 nmol l-1. Under these incubation conditions, the upward migration of spermatozoa increased remarkably with increasing adenosine triphosphate (ATP) concentration. The concentration of cyclic adenosine monophosphate (cAMP) and the activity of protein kinase A (PKA) were both elevated, and the PKA inhibitor, N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H89) reversed the increase of ATP production. The concentrations of cytoplasmic calcium ions and nicotinamide adenine dinucleotide (NADH) were both enhanced, while mitochondrial calcium uniporter (MCU) inhibitor, Ruthenium 360 (Ru360) did not reverse the increase of ATP production. Therefore, seminal plasma vitamin D may be involved in regulating sperm motility, and 1,25(OH)2D may enhance sperm motility by promoting the synthesis of ATP both through the cAMP/PKA pathway and the increase in intracellular calcium ions.
Adenosine Triphosphate/metabolism*
;
Adult
;
Calcium/metabolism*
;
Cyclic AMP/metabolism*
;
Cyclic AMP-Dependent Protein Kinases/metabolism*
;
Humans
;
Male
;
Semen/metabolism*
;
Semen Analysis
;
Signal Transduction/physiology*
;
Sperm Motility/physiology*
;
Spermatozoa/metabolism*
;
Vitamin D/pharmacology*
;
Vitamin D Deficiency/blood*
;
Wit and Humor as Topic
;
Young Adult
8.Resveratrol protects human sperm against cryopreservation-induced injury.
Shi-Jia LI ; Wei-Dong SU ; Li-Jun QIU ; Xiong WANG ; Juan LIU
National Journal of Andrology 2018;24(6):499-503
ObjectiveTo investigate the effects of resveratrol in the cryopreservation medium on the quality and function of post-thaw sperm.
METHODSSemen samples were obtained from 50 normozoospermic and 50 oligoasthenozoospermic men, liquefied and then cryopreserved in the glycerol-egg yolk-citrate (GEYC) medium with or without 30 μmol/L resveratrol. Sperm motility, viability and acrosome reaction (AR) were examined before and after thawing. Sperm lipid peroxidation and the level of reactive oxygen species (ROS) were measured using commercial malondialdehyde (MDA) and the ROS assay kit. Sperm mitochondrial membrane potential (MMP) and DNA damage were determined by Rhodamine 123 staining and TUNEL.
RESULTSThe percentage of progressively motile sperm (PMS), total sperm motility, sperm viability, MMP and AR were significantly decreased (P <0.05) while the levels of sperm ROS, MDA and DNA fragmentation index (DFI) remarkably increased in both the normozoospermia and oligoasthenozoospermia groups after cryopreservation as compared with those in the fresh ejaculate (P <0.05). In comparison with the non-resveratrol control, the post-thaw sperm cryopreserved with 30 μmol/L resveratrol showed markedly higher PMS ([32.7 ± 4.8] vs [43.1 ± 6.3] %, P <0.05), total motility ([44.8 ± 6.9] vs [56.9 ± 7.4] %, P <0.05), viability ([52.3 ± 6.1] vs [67.5 ± 5.6] %, P <0.05), MMP ([56.5 ± 7.0] vs [63.4 ± 7.5] %, P <0.05) and AR ([16.6 ± 3.8] vs [26.3 ± 4.7] %, P <0.05) but lower ROS, MDA and DFI (all P <0.05) in the normozoospermia group, and so did the post-thaw sperm in the oligoasthenozoospermia group, with a particularly lower DFI ([28.5 ± 4.8] vs [36.3 ± 5.7]%, P <0.01).
CONCLUSIONSResveratrol in the cryopreservation medium can improve the quality and function of post-thaw human sperm by reducing cryopreservation-induced sperm injury and the level of ROS.
Acrosome ; drug effects ; Animals ; Antioxidants ; pharmacology ; Cryopreservation ; methods ; DNA Fragmentation ; Humans ; Lipid Peroxidation ; Male ; Malondialdehyde ; Membrane Potential, Mitochondrial ; Reactive Oxygen Species ; analysis ; Resveratrol ; pharmacology ; Semen Analysis ; Semen Preservation ; adverse effects ; Sperm Motility ; drug effects ; Spermatozoa ; drug effects ; physiology
9.Neurophysiological effects of seminal vesicles.
National Journal of Andrology 2018;24(4):360-363
Seminal vesicles are involved in semen accumulation in the process of ejaculation, contracting and releasing seminal vesicle fluid accounting for about 50-80% of the semen, and the fructose in their secretions is an indispensable nutrient for sperm maturation. Thus, seminal vesicles are important male accessary glands closely related with the quality and quantity of sperm. In the process of semen accumulation, sympathetic and parasympathetic nerves participate in the regulation of the secretory function of seminal vesicle epithelia and the contraction of the smooth muscle layer as well as the distribution of adrenonergic, cholinergic, dopaminergic and various neurotransmitter receptors in the seminal vesicle epithelia and smooth muscle layer, which play a significant role in male fertility. This review discusses the neurophysiological effects of seminal vesicles in ejaculation.
Animals
;
Ejaculation
;
physiology
;
Male
;
Semen
;
physiology
;
Semen Analysis
;
Seminal Vesicles
;
physiology
;
Spermatozoa
10.Impact of Mycoplasma genitalium infection on the semen quality of infertile males.
Ze-Chen YAN ; Xue-Jun SHANG ; Wei LIU ; Xiu-Xia WAN ; Chang-Chun WAN ; Song XU ; Yong ZHONG ; Zhi-Qiang WENG
National Journal of Andrology 2018;24(4):317-321
ObjectiveTo explore Mycoplasma genitalium (MG) infection in the urogenital tract of infertile men and its influence on semen quality.
METHODSSemen samples were collected from 352 infertile males in the Center of Reproductive Medicine of Nanjing General Hospital from March to July 2015. MG infection was detected by real-time fluorescence simultaneous amplification and testing and semen analyses were conducted according to the WHO Laboratory Manual for the Examination and Processing of Human Semen (5th Ed) on the semen pH value, semen volume, total sperm count, sperm concentration, total sperm motility, percentages of progressively motile sperm (PMS) and immotile sperm (IMS), and sperm DNA fragmentation index (DFI). The data obtained were subjected to statistical analysis by t-test and non-parametric test (Wilcoxon test).
RESULTSMG infection was found in 3.4% (12/352) of the infertile patients. Compared with the MG-positive cases, the MG-negative ones showed a significantly higher semen volume ([2.85 ± 0.14] vs [3.84 ± 0.12] ml, P = 0.008) and percentage of PMS ([15.86±1.72] vs [60.95 ± 5.63] %, P = 0.032) but a lower DFI ([30.73 ±2.24] vs [20.71 ± 1.55]%, P = 0.014). However, no statistically significant differences were observed between the two groups in the semen pH value (7.38 ±0.02 vs 7.39 ± 0.01, P = 0.774), sperm concentration ([52.96 ± 15.78] vs [60.05 ± 4.29]×10⁶/ml, P = 0.683), sperm count ([154.15 ± 46.37] vs [221.56 ± 15.43]×106, P = 0.236), total sperm motility ([29.04 ± 3.11] vs [33.52 ± 1.51] %, P = 0.626), or percentage of IMS ([23.57 ± 0.99] vs [62.34 ± 1.69] %, P = 0.691).
CONCLUSIONSUrogenital MG infection is common in infertile males and potentially affects the semen quality, especially sperm vitality of the patient.
DNA Fragmentation ; Humans ; Infertility, Male ; microbiology ; physiopathology ; Male ; Male Urogenital Diseases ; microbiology ; Mycoplasma Infections ; complications ; Mycoplasma genitalium ; Semen ; Semen Analysis ; Sperm Count ; Sperm Motility ; Spermatozoa ; physiology

Result Analysis
Print
Save
E-mail