1.Bile salt induced solubilization of methylene blue:Study on methylene blue fluorescence properties and molecular mechanics calculation
Journal of Pharmaceutical Analysis 2017;7(1):71-75
Methylene blue (MB) is a hydrophobic drug molecule, having importance both as a staining reagent and pharmaceutical agent. MB is strongly fluorescent, with an emission peak at 686 nm (λex 665 nm). In the study, the possibility of MB as an extrinsic fluorophore to study the micellization behavior of bile salts (BSs) was carried out. Since BSs are drug delivery systems, the solubilization of hydrophobic MB drug molecule by BSs was achieved and the nature of association of MB with BS media, namely sodium cholate (NaC) and sodium deoxycholate (NaDC) was evaluated. Change in the photophysical properties of MB is monitored through fluorescence intensity and fluorescence anisotropy at emission peak, 686 nm of MB. Molecular mechanics calculations were carried out to evaluate the MB–BS association. The estimated heat of formation,ΔHf values are–625.19 kcal/mol for MB–NaC and–757.48 kcal/mol for MB–NaDC. The photophysical study also revealed that MB reports the step-wise aggregation pattern of BSs media, as an extrinsic fluorescence probe.
2.Denaturation studies on bovine serum albumin–bile salt system:Bile salt stabilizes bovine serum albumin through hydrophobicity
Malarkani KARPAGARAJ ; Sarkar IVY ; Selvam SUSITHRA
Journal of Pharmaceutical Analysis 2018;8(1):27-36
Protein denaturation is under intensive research, since it leads to neurological disorders of severe con-sequences. Avoiding denaturation and stabilizing the proteins in their native state is of great importance, especially when proteins are used as drug molecules or vaccines. It is preferred to add pharmaceutical excipients in protein formulations to avoid denaturation and thereby stabilize them. The present study aimed at using bile salts (BSs), a group of well-known drug delivery systems, for stabilization of proteins. Bovine serum albumin (BSA) was taken as the model protein, whose association with two BSs, namely sodium cholate (NaC) and sodium deoxycholate (NaDC), was studied. Denaturation studies on the pre-formed BSA-BS systems were carried out under chemical and physical denaturation conditions. Urea was used as the chemical denaturant and BSA-BS systems were subjected to various temperature conditions to understand the thermal (physical) denaturation. With the denaturation conditions prescribed here, the data obtained is informative on the association of BSA-BS systems to be hydrophobic and this effect of hydrophobicity plays an important role in stabilizing the serum albumin in its native state under both chemical and thermal denaturation.