1.Associations between urinary heavy metal concentrations and blood pressure in residents of Asian countries.
Yuki MIZUNO ; Hana SHIMIZU-FURUSAWA ; Shoko KONISHI ; Tsukasa INAOKA ; Sk Akhtar AHMAD ; Makiko SEKIYAMA ; Oekan S ABDOELLAH ; Budhi GUNAWAN ; Rajendra Prasad PARAJULI ; Yukio IKEMOTO ; Tran Dinh LAM ; Chiho WATANABE ; Masahiro UMEZAKI
Environmental Health and Preventive Medicine 2021;26(1):101-101
BACKGROUND:
Previous studies have suggested that exposures to heavy metals (arsenic, cadmium, lead, and selenium) may be associated with differences in blood pressure. However, the findings of these studies have been inconsistent. This study was performed to examine the associations between urinary heavy metal concentrations and blood pressure among residents of four Asian countries (Bangladesh, Indonesia, Nepal, and Vietnam).
METHODS:
This cross-sectional study examined 1899 adults in four Asian countries. Urinary concentrations of heavy metals were measured by inductively coupled plasma mass spectrometry. A questionnaire survey was administered regarding individual characteristics. Anthropometric measurements (height and weight) were performed. Systolic and diastolic blood pressures were measured after a short rest. Multiple linear regression models were applied to investigate associations between urinary heavy metal concentrations and blood pressure after adjustments for age, sex, and body mass index.
RESULTS:
The geometric means of the urinary concentrations of arsenic, cadmium, lead, and selenium were 84.6, 0.885, 2.09, and 16.5 μg/g creatinine, respectively. The urinary arsenic concentrations were slightly higher than those typically reported in non-polluted populations, while urinary cadmium, lead, and selenium concentrations were equivalent or slightly lower. The urinary lead concentrations were positively associated with both systolic and diastolic blood pressure, but urinary selenium concentrations were negatively associated with them.
CONCLUSIONS
Variations in the urinary concentrations of lead and selenium were associated with blood pressure at low levels of exposure/intake.
Adult
;
Arsenic/urine*
;
Bangladesh
;
Blood Pressure
;
Cadmium/urine*
;
Cross-Sectional Studies
;
Environmental Exposure
;
Female
;
Humans
;
Indonesia
;
Lead/urine*
;
Linear Models
;
Male
;
Metals, Heavy/urine*
;
Middle Aged
;
Nepal
;
Selenium/urine*
;
Vietnam
2.Effect of selenium supplementation on activity and mRNA expression of type 1 deiodinase in mice with excessive iodine intake.
Xue-Feng YANG ; Xiao-Hui HOU ; Jian XU ; Huai-Lan GUO ; Chen-Jiang YINQ ; Xiao-Yi CHEN ; Xiu-Fa SUN
Biomedical and Environmental Sciences 2006;19(4):302-308
OBJECTIVETo investigate the effect of selenium supplementation on the selenium status and selenoenzyme, especially the activity and mRNA expression of type 1 deiodinase (D1) in mice with excessive iodine (EI) intake and to explore the mechanism of selenium intervention on iodine-induced abnormities.
METHODSWeanling female BALB/c mice were given tap water or 3 mg/L of iodine or supplemented with 0.5 mg/L or 1.0 mg/L of selenium in the presence of excessive iodine for 5 months. Selenium status, thyroid hormone level, hepatic and renal D1 activity and mRNA expression were examined.
RESULTSExcessive iodine intake significantly decreased the selenium concentration in urine and liver, and the activity of glutathione peroxidase (GSH-Px) in liver. Meanwhile, serum total T4 (TT4) increased while serum total T3 (TT3) decreased. Hepatic D1 enzyme activity and mRNA expression were reduced by 33% and 86%, respectively. Renal D1 enzyme activity and mRNA were reduced by 30% and 55%, respectively. Selenium supplementation obviously increased selenium concentration, activity of GSH-Px and Dl as well as mRNA expression of D1. However, increasing the supplementation of Se from 0.5 to 1.0 mg/L did not further increase selenoenzyme activity and expression.
CONCLUSIONRelative selenium deficiency caused by excessive iodine plays an essential role in the mechanism of iodine-induced abnormalities. An appropriate dose of selenium supplementation exercises a beneficial intervention.
Animals ; Antioxidants ; pharmacology ; Creatinine ; metabolism ; urine ; Dietary Supplements ; Female ; Iodide Peroxidase ; genetics ; metabolism ; Iodine ; toxicity ; urine ; Kidney ; metabolism ; Liver ; metabolism ; Mice ; Mice, Inbred BALB C ; RNA, Messenger ; metabolism ; Selenium ; pharmacology ; urine ; Thyroxine ; blood ; Triiodothyronine ; blood
3.Effects of selenium and zinc on renal oxidative stress and apoptosis induced by fluoride in rats.
Ri-An YU ; Tao XIA ; Ai-Guo WANG ; Xue-Min CHEN
Biomedical and Environmental Sciences 2006;19(6):439-444
OBJECTIVETo study the effects of selenium and zinc on oxidative stress, apoptosis, and cell cycle changes in rat renal cells induced by fluoride.
METHODSWistar rats were given distilled water containing sodium fluoride (50 mg/L NaF) and were gavaged with different doses of selenium-zinc preparation for six months. Four groups were used and each group had eight animals (four males and four females). Group one, sham-handled control; group two, 50 mg/L NaF; group three, 50 mg/L NaF with a low dose of selenium-zinc preparation (0.1 mg/kg Na2 SeO3 and 14.8 mg/kg ZnSO4 x 7H2O); and group four, 50 mg/L NaF with a high dose of selenium-zinc preparation (0.2 mg/kg Na2 SeO3 and 29.6 mg/kg ZnSO4 x 7H2O). The activities of serum glutathione peroxidase (GSH-Px), kidney superoxide dismutase (SOD), and the levels of malondialdehyde (MDA) and glutathione (GSH) in the kidney were measured to assess the oxidative stress. Kidney cell apoptosis and cell cycle were detected by flow cytometry.
RESULTSNaF at the dose of 50 mg/L increased excretion of fluoride in urine, promoted activity of urine gamma-glutamyl transpeptidase (gamma-GT), inhibited activity of serum GSH-PX and kidney SOD, reduce kidney GSH content, and increased kidney MDA. NaF at the dose of 50 mg/L also induced rat renal apoptosis, reduced the cell number of G2/M phase in cell cycle, and decreased DNA relative content significantly. Selenium and zinc inhibited effects of NaF on oxidative stress and apoptosis, promoted the cell number of G2/M phase in cell cycle, but failed to increase relative DNA content significantly.
CONCLUSIONSodium fluoride administered at the dose of 50 mg/L for six months induced oxidative stress and apoptosis, and changes the cell cycle in rat renal cells. Selenium and zinc antagonize oxidative stress, apoptosis, and cell cycle changes induced by excess fluoride.
Animals ; Apoptosis ; drug effects ; Cell Cycle ; drug effects ; Glutathione ; metabolism ; Glutathione Peroxidase ; blood ; Kidney ; drug effects ; metabolism ; Malondialdehyde ; metabolism ; Oxidative Stress ; drug effects ; Rats ; Rats, Wistar ; Selenium ; pharmacology ; Sodium Fluoride ; antagonists & inhibitors ; toxicity ; urine ; Superoxide Dismutase ; metabolism ; Zinc ; pharmacology ; gamma-Glutamyltransferase ; urine