1.Biosynthesis of spherical selenium nanoparticles with halophilic Bacillus subtilis subspecies stercoris strain XP for inhibition of strawberry pathogens.
Yanyun ZHU ; Xiangping KONG ; Ejiao WU ; Ning ZHU ; Dong LIANG ; Menghan LOU ; Zhumeng ZHOU ; Hongmei JIN
Chinese Journal of Biotechnology 2021;37(8):2825-2835
Biosynthesis of nanomaterials has attracted much attention for its excellent characteristics such as low energy consumption, high safety, and environmental friendliness. As we all know, the toxic selenite can be transformed into higher-value nanomaterials by using bacteria. In this study, nano-selenium was synthesized by halophilic Bacillus subtilis subspecies stercoris strain XP in LB medium supplemented with selenite (electron acceptor). The physicochemical characteristics of nano-selenium were analyzed by scanning electron microscope (SEM), X-ray energy dispersive spectral analysis (EDAX), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). Meanwhile, the antifungal activity of nano-selenium to strawberry pathogens (fusarium wilt, erythema, and purple spot fungi) was determined. The products from reduction of selenite by strain XP was amorphous spherical selenium nanoparticles (SeNPs) with a diameter range of 135-165 nm. The production of SeNPs was positively correlated with time (0-48 h) and no changes were observed on cell morphology. Selenium was dominant in the surface of SeNPs where the organic elements (C, O, N, and S) existed at the same time. SeNPs were coated with biomolecules containing functional groups (such as -OH, C=O, N-H, and C-H) which were associated with the stability and bioactivity of particles. Although the highest concentration of SeNPs had significant (P<0.05) inhibitory effects on three strains of strawberry pathogens, antifungal activity to erythema and fusarium wilt pathogenic fungi was higher than that to purple spot pathogenic fungi from strawberry. In conclusion, strain XP not only has strong tolerance to high salt stress, but can be also used to synthesize biological SeNPs with good stability and biological activity. Thus, the strain XP has bright perspectives and great potential advantage in pathogens control and green selenium-rich strawberry planting as well as other fields.
Bacillus subtilis
;
Fragaria
;
Nanoparticles
;
Selenious Acid
;
Selenium
2.Characteristics of selenium nanoparticles synthesized by cell-free supernatant Cupriavidus sp. SHE.
Ying YANG ; Shuzhen LI ; Shuling FAN ; Jing YANG ; Zheng LI ; Henglin ZHANG ; Yuanyuan QU
Chinese Journal of Biotechnology 2020;36(6):1162-1169
In recent years, selenium nanoparticles (SeNPs) have been widely used in many fields such as nanotechnology, biomedicine and environmental remediation due to their good electrical conductivity, photothermal properties and anticancer properties. In this study, the cell-free supernatant, whole cell and the cell-free extracts of the strain Cupriavidus sp. SHE were used to synthesize SeNPs, and several methods were applied to analyze the crystal structure and surface functional groups of the nanoparticles. Finally, Pseudomonas sp. PI1 (G⁺) and Escherichia coli BL21 (G⁻) were selected to investigate the antibacterial properties of SeNPs. Cell-free supernatant, whole cell and cell-free extracts of the strain could synthesize SeNPs. As for the cell-free supernatant, selenite concentration of 5 mmol/L and pH=7 were favorable for the synthesis of SeNPs. TEM images show that the average size of nanospheres synthesized by the supernatant was 196 nm. XRD analysis indicates the hexagonal crystals structure of SeNPs. FTIR and SDS-PAGE confirmed the proteins bound to the surfaces of SeNPs. SeNPs synthesized by cell-free supernatant showed no antimicrobial activities against Pseudomonas sp. PI1 and Escherichia coli BL21 (DE3). These results suggest that proteins played an important role in biotransformation of SeNPs in an eco-friendly process, and SeNPs synthesized in this study were non-toxic and biologically compatible, which might be applied in other fields in the future.
Anti-Bacterial Agents
;
pharmacology
;
Bacteria
;
drug effects
;
Cupriavidus
;
metabolism
;
Nanoparticles
;
Selenious Acid
;
analysis
;
Selenium
;
chemistry
;
pharmacology
4.Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells.
Bona KIM ; Byung Sun YOON ; Jai Hee MOON ; Jonggun KIM ; Eun Kyoung JUN ; Jung Han LEE ; Jun Sung KIM ; Cheong Soon BAIK ; Aeree KIM ; Kwang Youn WHANG ; Seungkwon YOU
Experimental & Molecular Medicine 2012;44(1):26-35
Recent evidence has suggested that human skin fibroblasts may represent a novel source of therapeutic stem cells. In this study, we report a 3-stage method to induce the differentiation of skin fibroblasts into insulin-producing cells (IPCs). In stage 1, we establish the isolation, expansion and characterization of mesenchymal stem cells from human labia minora dermis-derived fibroblasts (hLMDFs) (stage 1: MSC expansion). hLMDFs express the typical mesenchymal stem cell marker proteins and can differentiate into adipocytes, osteoblasts, chondrocytes or muscle cells. In stage 2, DMEM/F12 serum-free medium with ITS mix (insulin, transferrin, and selenite) is used to induce differentiation of hLMDFs into endoderm-like cells, as determined by the expression of the endoderm markers Sox17, Foxa2, and PDX1 (stage 2: mesenchymal-endoderm transition). In stage 3, cells in the mesenchymal-endoderm transition stage are treated with nicotinamide in order to further differentiate into self-assembled, 3-dimensional islet cell-like clusters that express multiple genes related to pancreatic beta-cell development and function (stage 3: IPC). We also found that the transplantation of IPCs can normalize blood glucose levels and rescue glucose homeostasis in streptozotocin-induced diabetic mice. These results indicate that hLMDFs have the capacity to differentiate into functionally competent IPCs and represent a potential cell-based treatment for diabetes mellitus.
Animals
;
Biological Markers/metabolism
;
*Cell Culture Techniques
;
*Cell Differentiation
;
Cell Proliferation/drug effects
;
Cell Separation
;
Cells, Cultured
;
Dermis/*cytology/drug effects
;
Diabetes Mellitus, Experimental/*surgery
;
Female
;
Fibroblasts/*cytology/drug effects
;
Genitalia, Female/*cytology
;
Glucose/metabolism
;
Hepatocyte Nuclear Factor 3-beta/metabolism
;
Homeodomain Proteins/metabolism
;
Humans
;
Insulin/pharmacology/secretion
;
Insulin-Secreting Cells/*cytology/metabolism
;
*Islets of Langerhans Transplantation
;
Mesenchymal Stem Cells/*cytology/drug effects/metabolism
;
Mice
;
Mice, Nude
;
Niacinamide/pharmacology
;
Recovery of Function
;
SOXF Transcription Factors/metabolism
;
Sodium Selenite/pharmacology
;
Trans-Activators/metabolism
;
Transferrin/pharmacology
5.Inhibitory effects of grape seed proanthocyanidin extract on selenite-induced cataract formation and possible mechanism.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2012;32(4):613-619
This study investigated the inhibitory effect of grape seed proanthocyanidin extract (GSPE) on selenite-induced cataract formation in rats and the possible mechanism. Eighty 8-day-old Sprague-Dawley rats were divided randomly into 5 groups: control group, model group, three GSPE groups (low dose, medium dose and high dose). Control group received subcutaneous injection of physiological saline. Model group was given subcutaneous injection of sodium selenite (20 μmol/kg body weight) on the postpartum day 10, and once every other day for consecutive three times thereafter. GSPE treated groups were respectively administered GSPE at doses of 50, 100, and 200 mg/kg body weight intragastrically 2 days prior to the selenite injection (that was, on the postpartum day 8), and once daily for fourteen consecutive days thereafter. The opacity of lenses was observed, graded and photographed under the slit lamp microscopy and the maximal diameter of the nuclear cataract plaques was measured. The lenses were analyzed for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), malondialdehyde (MDA), calcium (Ca(2+)), nitric oxide (NO) and anti-hydroxyl radical ability (anti-OH(-)). The histomorphology of lenses was observed with HE staining under a light microscope. The levels of calpainII, and iNOS protein and mRNA expression in lenses were detected by using immunohistochemistry and real-time quantitative RT-PCR. The results showed subcutaneous injection of sodium selenite led to severe nuclear cataract in model group, and the achievement ratio of model group was 100%. As compared with model group, the degree of lenses opacity and the maximal diameter of nuclear cataract plaques were significantly reduced in GSPE-treated groups. Moreover, we observed selenite treatment caused a significant decrease in the activities of antioxidative enzymes (SOD, CAT, GSH-PX) and anti-OH(-) ability, accompanied by a significant increase in the levels of MDA, NO, Ca(2+) as well as iNOS, and calpainII protein and mRNA expression. Administration of GSPE could dose-dependently preserve the activities of these antioxidative enzymes and anti-OH(-) ability, accompanied by a significant reduction in the levels of MDA, NO, Ca(2+) as well as iNOS, and calpainII protein and mRNA expression. These results suggested that GSPE markedly prevented selenite-induced cataract formation probably by suppressing the generation of lipid peroxidation and free radicals as well as the activation of iNOS, and calpainII in the lenses.
Animals
;
Cataract
;
chemically induced
;
drug therapy
;
Grape Seed Extract
;
pharmacology
;
Plant Extracts
;
pharmacology
;
Proanthocyanidins
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Selenious Acid
;
adverse effects
6.The effects of selenium on tumor growth in epithelial ovarian carcinoma.
Jin Sun PARK ; Ji Yoon RYU ; Hye Kyung JEON ; Young Jae CHO ; Young Ae PARK ; Jung Joo CHOI ; Jeong Won LEE ; Byoung Gie KIM ; Duk Soo BAE
Journal of Gynecologic Oncology 2012;23(3):190-196
OBJECTIVE: Epidemiological studies suggest that selenium protects against the development of several cancers. Selenium (sodium selenite) has been reported to interfere with cell growth and proliferation, and to induce cell death. In this study, we tested whether selenium could have growth-inhibiting effect in ovarian cancer cells and an orthotopic animal model. METHODS: Cell growth in selenium-treated cells was determined in human ovarian cancer cells, A2780, HeyA8, and SKOV3ip1 using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Animal experiment of selenium with paclitaxel was performed using SKOV3ip1 cells in nude mice to evaluate their inhibiting effect for tumor growth. In addition, another animal experiment of paclitaxel with or without selenium was performed to assess the effect of survival and food intake in mice. RESULTS: The in vitro growth of selenium-treated cells was significantly decreased dose-dependently in A2780, HeyA8, and SKOV3ip1 cells. Therapy experiment in mice was started 1 week after injection of the SKOV3ip1 cells. Treatment with selenium (1.5 mg/kg, 3 times/week) and paclitaxel injection showed no addictive effect of the inhibition of tumor growth. However, combination of selenium and paclitaxel showed the slightly increased food intake compared with paclitaxel alone. CONCLUSION: Although selenium has growth-inhibiting effect in ovarian carcinoma cells in vitro, there is no additive effect on tumor growth in mice treated with combination of paclitaxel and selenium. However, food intake is slightly higher in selenium-treated mice during chemotherapy.
Animal Experimentation
;
Animals
;
Cell Death
;
Cell Survival
;
Eating
;
Humans
;
Mice
;
Mice, Nude
;
Ovarian Neoplasms
;
Paclitaxel
;
Selenium
;
Sodium Selenite
7.Effects of sodium selenite on the expressions of beta-catenin and its target cyclin D1 in colorectal cancer cells HCT 116 and SW480.
Hui LUO ; Yang YANG ; Cai-Min XU
Acta Academiae Medicinae Sinicae 2011;33(6):654-658
OBJECTIVETo explore the effects of sodium selenite on the expressions of beta-catenin and cyclin D1 in colorectal cancer cells HCT 116 and SW480.
METHODSHCT 116 and SW480 cells were treated by 10 micromol/L sodium selenite at different time points. The expressions and transcription of beta-catenin and cyclin D1 were detected by Western blot analysis and reverse transcriptase polymerase chain reaction (RT-PCR), respectively. Meanwhile, the impact of MG132 (a proteasome inhibitor) pretreatment on the expressions of beta-catenin and cyclin D1 was observed through Western blot analysis. The interaction between beta-catenin and T cell factor 4 (TCF4) after selenite treatment was evaluated using co-immunoprecipitation assay.
RESULTSSodium selenite inhibited the expression of beta-catenin and transcription of its target such as cyclin D1. MG132 pretreatment prevented the inhibition of beta-catenin signaling triggered by selenite in HCT 116 and SW480 cells. Furthermore, selenite treatment disrupted the interaction between beta-catenin and TCF4 in HCT 116 and SW480 cells.
CONCLUSIONSSodium selenite can lower the expression levels of beta-catenin and its target cyclin D1, during which the proteasome-mediated degradative pathway may be involved. The decreased interaction between beta-catenin and TCF4 due to sodium selenite may be also involved in the regulation of beta-catenin signaling.
Cell Line, Tumor ; Colorectal Neoplasms ; metabolism ; Cyclin D1 ; metabolism ; HCT116 Cells ; Humans ; Sodium Selenite ; pharmacology ; beta Catenin ; metabolism
8.The curative effects of different drugs on liver cell damage of rats induced by acute nickel carbonyl poisoning.
Jing LIU ; Qiu-ying WANG ; Bei WANG ; Xiao-qiang XUAN ; Qiong CHEN ; Dong-wei XU ; Ning CHENG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2011;29(2):98-102
OBJECTIVETo assess the curative effects of different drugs on liver cell damage of rats induced by acute nickel carbonyl poisoning.
METHODSIn present study 220 SD rats were divided into control group (10 rats), carbonyl nickel group (10 rats), 20 mg/kg methylprednisolone group (40 rats), 100 mg/kg DDC group (40 rats), 10 µmol/kg sodium selenite group (40 rats), 0.25 ml shenfuhuiyangtang group (40 rats) and 20 mg/kg methylprednisolone with 100 mg/kg DDC group (40 rats). All rats except for control group inhaled passively 250 mg/m(3) carbonyl nickel for 30 minutes. At 4h and 30h after exposure, the drugs were given intraperitoneally to the rats. On the 3rd and 7th days after exposure, the liver samples were taken from 10 rats each group. The DNA damage of liver cells was detected using comet assay, the ultrastructure changes in liver cells were examined under an electronmicroscope.
RESULTSCompared to carbonyl nickel group, the tail lengths of liver cells in 5 groups administrated at 4 h or 30 h and tested on the 3rd or 7th day after exposure decreased significantly (P < 0.05). Compared to the control group, the tail lengths of liver cells in sodium selenite and shenfuhuiyangtang groups administrated at 4h after exposure or sodium selenite, shenfuhuiyangtang and methylprednisolone with DDC groups administrated at 30h after exposure increased significantly (P < 0.05 or P < 0.01), when tested on the 3rd day after exposure. Except from methylprednisolone sub-group administrated at 4h and tested on the 7th day after exposure, the tail lengths of liver cells in other groups administrated at 4 h or 30 h and tested on the 7th day after exposure increased significantly (P < 0.05). Compared to carbonyl nickel group, the Olive moment of liver cells in 5 groups administrated at 4 h or 30 h tested on the 3rd or 7th day after exposure decreased significantly (P < 0.05 or P < 0.01). Compared to the control group, the Olive moment of liver cells in following groups (selenite and shenfuhuiyangtang groups administrated at 4 h or 30 h and tested on the 3rd or 7th day after exposure, DDC group administrated at 4 h or 30 h and tested on the 7th day after exposure, DDC group administrated at 30h and tested on the 3rd day after exposure, and methylprednisolone with DDC group administrated at 30 h and tested on the 7th day after exposure) increased significantly (P < 0.05 or P < 0.01). As compared with carbonyl nickel group, the ultrastructure observation indicated that the nucleus and other organelles of liver cells in methylprednisolone, DDC and methylprednisolone with DDC groups administrated at 4h and tested on the 3rd day were access to normal levels.
CONCLUSIONThe results of present study showed that methylprednisolone, DDC and methylprednisolone with DDC could improve obviously the repair of rat liver cell damage induced by acute carbonyl nickel poisoning, and the curative effects of early treatment were better than those of later treatment.
Animals ; Chemical and Drug Induced Liver Injury ; drug therapy ; pathology ; DNA Damage ; Drugs, Chinese Herbal ; therapeutic use ; Hepatocytes ; pathology ; Male ; Methylprednisolone ; therapeutic use ; Organometallic Compounds ; poisoning ; Rats ; Rats, Sprague-Dawley ; Sodium Selenite ; therapeutic use ; Zalcitabine ; therapeutic use
9.The Effect of Sodium Selenite on Breast Cancer-Related Lymphedema.
Byung Hun KIM ; Ki Hun HWANG ; Ho Joong JEONG ; Ghi Chan KIM ; Young Joo SIM
Journal of the Korean Academy of Rehabilitation Medicine 2011;35(2):207-213
OBJECTIVE: To investigate the effects of complex decongestive physiotherapy (CDPT) with sodium selenite compared to the effects of CDPT without sodium selenite for the treatment of breast cancer-related lymphedema (BCRL). METHOD: Patients (n=40) who were diagnosed with BCRL were randomly assigned to the two groups: sodium selenite group or the non-sodium selenite group. In the sodium selenite group, sodium selenite was administered for 100 days concurrently with CDPT. In the non-sodium selenite group, only CDPT was administered. The main outcome measurements included limb circumference (proximal, distal and total) to indicate volume changes, the visual analogue scale (VAS) and the short form-36 version 2 questionnaire (SF-36) scores to evaluate the quality of life (QoL) pre-treatment, 100 days post-treatment and 130 days post-treatment for each patient. RESULTS: The sodium selenite group experienced volume reduction of 8.22% and 9.21%, at 100 and 130 days post-treatment, respectively. The non-sodium selenite group experienced 5.57% and 6.11% reduction in swelling at the same periods. Between the two groups, more significant volume reduction was observed in the affected distal limbs of patients assigned to the sodium selenite group compared to patients in the non-sodium group. However, the VAS and the SF-36 scores were not significantly different between the two groups. CONCLUSION: Sodium selenite therapy in combination with CDPT is effective in reducing the volume of upper limb in BCRL, and significantly reduce the volume of the affected distal upper limb compared to CDPT alone.
Breast
;
Extremities
;
Humans
;
Lymphedema
;
Quality of Life
;
Surveys and Questionnaires
;
Sodium
;
Sodium Selenite
;
Upper Extremity
10.Analysis of the Effective Fraction of Sun Ginseng Extract in Selenite Induced Cataract Rat Model.
Sang Mok LEE ; Jung Moon SUN ; Jin Ho JEONG ; Mee Kum KIM ; Won Ryang WEE ; Jeong Hill PARK ; Jin Hak LEE
Journal of the Korean Ophthalmological Society 2010;51(5):733-739
PURPOSE: To compare the protective effects of saponin and non-saponin Sun-ginseng extract fractions in a selenite-induced rat cataract model. METHODS: A total of 101 Sprague-Dawley rat pups were divided into four groups by treatment: Sun-ginseng, saponin fraction, non-saponin fraction, and control. For induction of cataracts, sodium selenite 15 nmol/g was injected subcutaneously in 13 day-old rat pups. Sun-ginseng extract 100 microgram/g (Group I, Ginseng Science, Seoul, Korea), saponin fraction 100 microgram/g (Group II), non-saponin fraction 100 microgram/g (Group III), and phosphate buffered saline (Control group) were injected intraperitoneally every two days for a total of seven injections. The rats were sacrified and their lenses were dissected and photographed at day 7 and 14, and the cataracts were graded according to the ratio of the cataract area to the total lens area. The blind method was used for the evaluation of the cataract area. RESULTS: At day 14, cataract formation rates (CFR) were 33.3% in group I, 76.4% in group II, 41.2% in group III, and 77.7% in the control group. The mean cataract area (MCA) was 13.4+/-20.8% in group I, 14.4+/-11.7% in group II, 5.7+/-7.7% in group III, and 15.8+/-12.1% in the control group. Group III showed statistically significant results compared with those of control group (CFR p=0.001, MCA p=0.001). We observed significantly lower incidence and smaller mean cataract area in Group I and Group III at day 7 compared with the control group (Group I, CFR p=0.018; Group III, CFR p=0.032, MCA p=0.005). CONCLUSIONS: The protective effects of Sun-ginseng extract are caused by the components in the non-saponin fraction, not by those in the saponin fraction, in a selenite-induced cataract rat model.
Animals
;
Cataract
;
Incidence
;
Panax
;
Rats
;
Saponins
;
Sodium Selenite
;
Solar System

Result Analysis
Print
Save
E-mail