1.Potential effect of endothelial progenitor cells on pentylenetetrazole-induced seizures in rats: an evaluation of relevant lncRNAs.
Shimaa O ALI ; Nancy N SHAHIN ; Marwa M SAFAR ; Sherine M RIZK
Journal of Zhejiang University. Science. B 2025;26(8):789-804
OBJECTIVES:
The use of stem cells is a promising strategy for seizure treatment owing to their unique characteristics. We investigated the role of endothelial progenitor cells (EPCs) in a pentylenetetrazole (PTZ)-induced rat seizure model. A selected panel of long noncoding RNAs (lncRNAs), which maintain an elaborate balance in brain neural regulatory networks as well as the autophagy pathway, was also targeted.
METHODS:
The impact of intravenously administered EPCs on PTZ-induced kindling in rats was evaluated by measuring the expression of neuronal damage markers, neurotrophic factors, and relevant lncRNA genes. Rat behavior was assessed using Y-maze test and open field test (OFT).
RESULTS:
EPCs mitigated seizure-associated neurological damage and reversed PTZ-induced working memory and locomotor activity deficits, as evidenced by improved performance in the Y-maze test and OFT. EPC treatment reversed the downregulation of the expression of the lncRNAs Evf2, Pnky, Dlx1, APF, HOTAIR, and FLJ11812. EPCs also boosted vascular endothelial growth factor (VEGF) expression. The ameliorative effect achieved by EPCs was comparable to that produced by valproate.
CONCLUSIONS
These findings indicate that EPCs ameliorate kindling epileptic seizures and their associated abnormalities and that the effect of EPCs may be mediated via the upregulation of certain regulatory lncRNAs.
Animals
;
Pentylenetetrazole
;
RNA, Long Noncoding
;
Seizures/therapy*
;
Rats
;
Male
;
Endothelial Progenitor Cells/transplantation*
;
Rats, Sprague-Dawley
;
Kindling, Neurologic
;
Vascular Endothelial Growth Factor A/metabolism*
;
Disease Models, Animal
2.USP47 Regulates Excitatory Synaptic Plasticity and Modulates Seizures in Murine Models by Blocking Ubiquitinated AMPAR Degradation.
Juan YANG ; Haiqing ZHANG ; You WANG ; Yuemei LUO ; Weijin ZHENG ; Yong LIU ; Qian JIANG ; Jing DENG ; Qiankun LIU ; Peng ZHANG ; Hao HUANG ; Changyin YU ; Zucai XU ; Yangmei CHEN
Neuroscience Bulletin 2025;41(10):1805-1823
Epilepsy is a chronic neurological disorder affecting ~65 million individuals worldwide. Abnormal synaptic plasticity is one of the most important pathological features of this condition. We investigated how ubiquitin-specific peptidase 47 (USP47) influences synaptic plasticity and its link to epilepsy. We found that USP47 enhanced excitatory postsynaptic transmission and increased the density of total dendritic spines and the proportion of mature dendritic spines. Furthermore, USP47 inhibited the degradation of the ubiquitinated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit glutamate receptor 1 (GluR1), which is associated with synaptic plasticity. In addition, elevated levels of USP47 were found in epileptic mice, and USP47 knockdown reduced the frequency and duration of seizure-like events and alleviated epileptic seizures. To summarize, we present a new mechanism whereby USP47 regulates excitatory postsynaptic plasticity through the inhibition of ubiquitinated GluR1 degradation. Modulating USP47 may offer a potential approach for controlling seizures and modifying disease progression in future therapeutic strategies.
Animals
;
Receptors, AMPA/metabolism*
;
Neuronal Plasticity/physiology*
;
Seizures/physiopathology*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Mice
;
Ubiquitin Thiolesterase/genetics*
;
Male
;
Excitatory Postsynaptic Potentials/physiology*
;
Ubiquitination
;
Dendritic Spines/metabolism*
;
Hippocampus/metabolism*
3.CXCR5 Regulates Neuronal Polarity Development and Migration in the Embryonic Stage via F-Actin Homeostasis and Results in Epilepsy-Related Behavior.
Zhijuan ZHANG ; Hui ZHANG ; Ana ANTONIC-BAKER ; Patrick KWAN ; Yin YAN ; Yuanlin MA
Neuroscience Bulletin 2023;39(11):1605-1622
Epilepsy is a common, chronic neurological disorder that has been associated with impaired neurodevelopment and immunity. The chemokine receptor CXCR5 is involved in seizures via an unknown mechanism. Here, we first determined the expression pattern and distribution of the CXCR5 gene in the mouse brain during different stages of development and the brain tissue of patients with epilepsy. Subsequently, we found that the knockdown of CXCR5 increased the susceptibility of mice to pentylenetetrazol- and kainic acid-induced seizures, whereas CXCR5 overexpression had the opposite effect. CXCR5 knockdown in mouse embryos via viral vector electrotransfer negatively influenced the motility and multipolar-to-bipolar transition of migratory neurons. Using a human-derived induced an in vitro multipotential stem cell neurodevelopmental model, we determined that CXCR5 regulates neuronal migration and polarization by stabilizing the actin cytoskeleton during various stages of neurodevelopment. Electrophysiological experiments demonstrated that the knockdown of CXCR5 induced neuronal hyperexcitability, resulting in an increased number of seizures. Finally, our results suggested that CXCR5 deficiency triggers seizure-related electrical activity through a previously unknown mechanism, namely, the disruption of neuronal polarity.
Animals
;
Humans
;
Mice
;
Actin Cytoskeleton/metabolism*
;
Actins/metabolism*
;
Epilepsy/metabolism*
;
Neurons/metabolism*
;
Receptors, CXCR5/metabolism*
;
Seizures/metabolism*
5.KIF17 Modulates Epileptic Seizures and Membrane Expression of the NMDA Receptor Subunit NR2B.
Yan LIU ; Xin TIAN ; Pingyang KE ; Juan GU ; Yuanlin MA ; Yi GUO ; Xin XU ; Yuanyuan CHEN ; Min YANG ; Xuefeng WANG ; Fei XIAO
Neuroscience Bulletin 2022;38(8):841-856
Epilepsy is a common and severe brain disease affecting >65 million people worldwide. Recent studies have shown that kinesin superfamily motor protein 17 (KIF17) is expressed in neurons and is involved in regulating the dendrite-targeted transport of N-methyl-D-aspartate receptor subtype 2B (NR2B). However, the effect of KIF17 on epileptic seizures remains to be explored. We found that KIF17 was mainly expressed in neurons and that its expression was increased in epileptic brain tissue. In the kainic acid (KA)-induced epilepsy mouse model, KIF17 overexpression increased the severity of epileptic activity, whereas KIF17 knockdown had the opposite effect. In electrophysiological tests, KIF17 regulated excitatory synaptic transmission, potentially due to KIF17-mediated NR2B membrane expression. In addition, this report provides the first demonstration that KIF17 is modified by SUMOylation (SUMO, small ubiquitin-like modifier), which plays a vital role in the stabilization and maintenance of KIF17 in epilepsy.
Animals
;
Epilepsy/metabolism*
;
Kinesins/metabolism*
;
Mice
;
Neurons/metabolism*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Seizures/metabolism*
6.Anti-Seizure and Neuronal Protective Effects of Irisin in Kainic Acid-Induced Chronic Epilepsy Model with Spontaneous Seizures.
Jie YU ; Yao CHENG ; Yaru CUI ; Yujie ZHAI ; Wenshen ZHANG ; Mengdi ZHANG ; Wenyu XIN ; Jia LIANG ; Xiaohong PAN ; Qiaoyun WANG ; Hongliu SUN
Neuroscience Bulletin 2022;38(11):1347-1364
An increased level of reactive oxygen species is a key factor in neuronal apoptosis and epileptic seizures. Irisin reportedly attenuates the apoptosis and injury induced by oxidative stress. Therefore, we evaluated the effects of exogenous irisin in a kainic acid (KA)-induced chronic spontaneous epilepsy rat model. The results indicated that exogenous irisin significantly attenuated the KA-induced neuronal injury, learning and memory defects, and seizures. Irisin treatment also increased the levels of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), which were initially reduced following KA administration. Furthermore, the specific inhibitor of UCP2 (genipin) was administered to evaluate the possible protective mechanism of irisin. The reduced apoptosis, neurodegeneration, and spontaneous seizures in rats treated with irisin were significantly reversed by genipin administration. Our findings indicated that neuronal injury in KA-induced chronic epilepsy might be related to reduced levels of BDNF and UCP2. Moreover, our results confirmed the inhibition of neuronal injury and epileptic seizures by exogenous irisin. The protective effects of irisin may be mediated through the BDNF-mediated UCP2 level. Our results thus highlight irisin as a valuable therapeutic strategy against neuronal injury and epileptic seizures.
Rats
;
Animals
;
Kainic Acid/toxicity*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Fibronectins/metabolism*
;
Hippocampus/metabolism*
;
Rats, Sprague-Dawley
;
Epilepsy/metabolism*
;
Seizures/prevention & control*
7.Clinicopathological and molecular features of multinodular and vacuolating neuronal tumors of the cerebrum.
Wei WANG ; Wen Li ZHAO ; Xue Fei WEN ; Wen Zhi CUI ; Dan Li YE ; Guang Ning YAN ; Geng CHEN
Chinese Journal of Pathology 2022;51(11):1129-1134
Objective: To investigate clinicopathological features of multinodular and vacuolar neurodegenerative tumor (MVNT) of the cerebrum, and to investigate its immunophenotype, molecular characteristics and prognosis. Methods: Four cases were collected at the General Hospital of Southern Theater Command, Guangzhou, China and one case was collected at the First People's Hospital of Huizhou, China from 2013 to 2021. Clinical, histological, immunohistochemical and molecular characteristics of these five cases were analyzed. Follow-up was carried out to evaluate their prognoses. Results: There were four females and one male, with an average age of 42 years (range, 17 to 51 years). Four patients presented with seizures, while one presented with discomfort on the head. Pre-operative imaging demonstrated non-enhancing, T2-hyperintense multinodular lesions in the deep cortex and superficial white matter of the frontal (n=1) or temporal lobes (n=4). Microscopically, the tumor cells were mostly arranged in discrete and coalescent nodules primarily within the deep cortical ribbon and superficial subcortical white matter. The tumors were composed of large cells with ganglionic morphology, vesicular nuclei, prominent nucleoli and amphophilic or lightly basophilic cytoplasm. They exhibited varying degrees of matrix vacuolization. Vacuolated tumor cells did not show overt cellular atypia or any mitotic activities. Immunohistochemically, tumor cells exhibited widespread nuclear staining for the HuC/HuD neuronal antigens, SOX10 and Olig2. Expression of other neuronal markers, including synaptophysin, neurofilament and MAP2, was patchy to absent. The tumor cells were negative for NeuN, GFAP, p53, H3K27M, IDH1 R132H, ATRX, BRG1, INI1 and BRAF V600E. No aberrant molecular changes were identified in case 3 and case 5 using next-generation sequencing (including 131 genes related to diagnosis and prognosis of central nervous system tumors). All patients underwent complete or substantial tumor excision without adjuvant chemoradiotherapy. Post-operative follow-up information over intervals of 6 months to 8 years was available for five patients. All patients were free of recurrence. Conclusions: MVNT is an indolent tumor, mostly affecting adults, which supports classifying MVNT as WHO grade 1. There is no tumor recurrence even in the patients treated with subtotal surgical excision. MVNTs may be considered for observation or non-surgical treatments if they are asymptomatic.
Adult
;
Female
;
Humans
;
Male
;
Brain Neoplasms/pathology*
;
Cerebrum/pathology*
;
Neurons/metabolism*
;
Seizures
;
Temporal Lobe/pathology*
;
Biomarkers, Tumor/metabolism*
8.Genetic and phenotypic analysis of a patient with phosphogylcerate dehydrogenase deficiency.
Chinese Journal of Medical Genetics 2021;38(2):170-173
OBJECTIVE:
To explore the genetic basis for a child with ocular anomaly, microcephaly, growth retardation and intrauterine growth restriction.
METHODS:
The patient underwent ophthalmologic examinations including anterior segment photography, fundus color photography, and fundus fluorescein angiography. The patient and her parents were subjected to whole exome sequencing. Candidate variants were verified by Sanger sequencing and bioinformatic analysis.
RESULTS:
The patient was found to have bilateral persistent pupillary membrane and coloboma of inferior iris, in addition with macular dysplasia and radial pigmentation near the hemal arch of the temporal retina. She was found to have carried compound heterozygous missense variants of the PHGDH gene, namely c.196G>A and c.1177G>A, which were respectively inherited from her father and mother. Bioinformatic analysis suggested both variants to be pathogenic.
CONCLUSION
The patient was diagnosed with phosphoglycerate dehydrogenase deficiency. Above finding has enriched the phenotypic spectrum of the disease with ocular manifestations.
Carbohydrate Metabolism, Inborn Errors/genetics*
;
Child
;
Coloboma
;
Female
;
Humans
;
Microcephaly/genetics*
;
Mutation
;
Phenotype
;
Phosphoglycerate Dehydrogenase/genetics*
;
Psychomotor Disorders/genetics*
;
Seizures/genetics*
;
Whole Exome Sequencing
9.Urological Problems in Patients with Menkes Disease.
Mi Young KIM ; Ji Hyun KIM ; Myung Hyun CHO ; Young Hun CHOI ; Seong Heon KIM ; Young Jae IM ; Kwanjin PARK ; Hee Gyung KANG ; Jong Hee CHAE ; Hae Il CHEONG
Journal of Korean Medical Science 2019;34(1):e4-
BACKGROUND: Menkes disease (MD) is a rare X-linked hereditary multisystemic disorder that is caused by dysfunction of copper metabolism. Patients with MD typically present with progressive neurodegeneration, some connective tissue abnormalities, and characteristic “kinky” hair. In addition, various types of urological complications are frequent in MD because of underlying connective tissue abnormalities. In this study, we studied the clinical features and outcomes of MD, focusing on urological complications. METHODS: A total of 14 unrelated Korean pediatric patients (13 boys and 1 girl) with MD were recruited, and their phenotypes and genotypes were analyzed by retrospective review of their medical records. RESULTS: All the patients had early-onset neurological deficit, including developmental delay, seizures, and hypotonia. The girl patient showed normal serum copper and ceruloplasmin levels as well as milder symptoms. Mutational analysis of the ATP7A gene revealed 11 different mutations in 12 patients. Bladder diverticula was the most frequent urological complication: 8 (57.1%) in the 14 patients or 8 (72.7%) in the 11 patients who underwent urological evaluation. Urological imaging studies were performed essentially for the evaluation of accompanying urinary tract infections. Four patients had stage II chronic kidney disease at the last follow-up. CONCLUSION: Urologic problems occurred frequently in MD, with bladder diverticula being the most common. Therefore, urological imaging studies and appropriate management of urological complications, which may prevent or reduce the development of urinary tract infections and renal parenchymal damage, are required in all patients with MD.
Ceruloplasmin
;
Connective Tissue
;
Copper
;
Diverticulum
;
Female
;
Follow-Up Studies
;
Genotype
;
Hair
;
Humans
;
Medical Records
;
Menkes Kinky Hair Syndrome*
;
Metabolism
;
Muscle Hypotonia
;
Phenotype
;
Renal Insufficiency, Chronic
;
Retrospective Studies
;
Seizures
;
Urinary Bladder
;
Urinary Tract Infections
10.Respiratory failure in a diabetic ketoacidosis patient with severe hypophosphatemia.
Han Saem CHOI ; Ahreum KWON ; Hyun Wook CHAE ; Junghwan SUH ; Duk Hee KIM ; Ho Seong KIM
Annals of Pediatric Endocrinology & Metabolism 2018;23(2):103-106
Phosphate is essential in regulating human metabolic processes, and severe hypophosphatemia can induce neurologic and hematological complications and result in respiratory failure and cardiac dysfunction. Therefore, correction of severe hypophosphatemia can be pivotal in the management of diabetic ketoacidosis (DKA). We report the case of a 14-year-old female who was diagnosed with type 1 diabetes and referred to our institute for treatment of DKA. Although the patient received fluid and continuous insulin administration according to the current DKA treatment protocol, generalized tonic seizures and cardiac arrest developed. After cardiopulmonary resuscitation, the patient recovered and was stable. Within 16 hours after DKA treatment, the patient developed respiratory failure with severe hypophosphatemia that required mechanical ventilation. Concurrent neurologic evaluation revealed no specific abnormalities. The patient recovered without any complications after correcting the hypophosphatemia. We suggest vigilant monitoring of the phosphate level in DKA patients and active replacement when required.
Adolescent
;
Cardiopulmonary Resuscitation
;
Clinical Protocols
;
Diabetic Ketoacidosis*
;
Female
;
Heart Arrest
;
Humans
;
Hypophosphatemia*
;
Insulin
;
Metabolism
;
Respiration, Artificial
;
Respiratory Insufficiency*
;
Seizures

Result Analysis
Print
Save
E-mail