1.Changes of the level of G protein alpha-subunit mRNA by withdrawal from morphine and butorphanol.
The Korean Journal of Physiology and Pharmacology 2000;4(4):291-299
Morphine or butorphanol was continuously infused into cerebroventricle (i.c.v.) with the rate of 26 nmol/microliter/h for 3 days, and the withdrawal from opioid was rendered 7 hrs after the stopping of infusion. The expression of physical dependence produced by these opioids was evaluated by measuring the naloxone-precipitated withdrawal signs. The withdrawal signs produced in animals dependent on butorphanol (kappa opioid receptor agonist) were similar to those of morphine (mu opioid receptor agonist). Besides the behavioral modifications, opioid withdrawal affected G protein expression in the central nervous system. The G-protein alpha-subunit has been implicated in opioid tolerance and withdrawal. The effects of continuous infusion of morphine or butorphanol on the modulation of G protein alpha-subunit mRNA were investigated by using in situ hybridization study. In situ hybridization showed that the levels of G alphas and G alphai were changed during opioid withdrawal. Specifically, the level of G alphas mRNA was decreased in the cortex and cerebellar granule layer during the morphine and butorphanol withdrawal. The level of G alphai mRNA was decreased in the dentate gyrus and cerebellar granule layer during the morphine withdrawal. However, the level of G alphai mRNA was significantly elevated during the butorphanol withdrawal. These results suggest that region-specific changes of G protein alpha-subunit mRNA were involved in the withdrawal from morphine and butorphanol.
Analgesics, Opioid
;
Animals
;
Autoradiography
;
Butorphanol*
;
Central Nervous System
;
Dentate Gyrus
;
GTP-Binding Proteins*
;
In Situ Hybridization
;
Morphine*
;
Receptors, Opioid
;
RNA, Messenger*
2.Phytoceramide Alleviates the Carrageenan/Kaolin-Induced Arthritic Symptoms by Modulation of Inflammation
Bongjun SUR ; Mijin KIM ; Thea VILLA ; Seikwan OH
Biomolecules & Therapeutics 2023;31(5):536-543
Phytoceramide (Pcer) is found mainly in plants and yeast. It can be neuroprotective and immunostimulatory on various cell types. In this study, the therapeutic effect of Pcer was explored using the carrageenan/kaolin (C/K)-induced arthritis rat model and fibroblast-like synoviocytes (FLS). Pcer treatment (1, 10, and 30 mg/kg/day) were given to the arthritic rats for 6 days after disease induction. Weight distribution ration (WDR), knee thickness, squeaking score, serum levels of proinflammatory mediators, and histological analysis were measured and performed to evaluate arthritic symptoms in the rat model. In interleukin (IL)‑1β‑stimulated FLS, proinflammatory mediators were measured after Pcer (1-30 µM) treatment. Arthritic symptoms in rats with Pcer treatment were significantly decreased at days 4 to 6 after C/K arthritis induction. Inflammation in the knee joints were also significantly decreased in rats with Pcer treatment. Furthermore, in IL-1β‑stimulated FLS, the expressions of proinflammatory mediators were also inhibited by Pcer. As shown by the results, Pcer has anti-arthritic effects in the C/K rat model and in synovial cells, suggesting that Pcer has the potential to be a useful agent in arthritis treatment.
3.Fangchinoline Has an Anti-Arthritic Effect in Two Animal Models and in IL-1β-Stimulated Human FLS Cells
Thea VILLA ; Mijin KIM ; Seikwan OH
Biomolecules & Therapeutics 2020;28(5):414-422
Fangchinoline (FAN) is a bisbenzylisoquinoline alkaloid that is widely known for its anti-tumor properties. The goal of this study is to examine the effects of FAN on arthritis and the possible pathways it acts on. Human fibroblast-like synovial cells (FLS), carrageenan/kaolin arthritis rat model (C/K), and collagen-induced arthritis (CIA) mice model were used to establish the efficiency of FAN in arthritis. Human FLS cells were treated with FAN (1, 2.5, 5, 10 μM) 1 h before IL-1β (10 ng/mL) stimulation. Cell viability, reactive oxygen species measurement, and western blot analysis of inflammatory mediators and the MAPK and NF-κB pathways were performed. In the animal models, after induction of arthritis, the rodents were given 10 and 30 mg/kg of FAN orally 1 h before conducting behavioral experiments such as weight distribution ratio, knee thickness measurement, squeaking score, body weight measurement, paw volume measurement, and arthritis index measurement. Rodent knee joints were also analyzed histologically through H&E staining and safranin staining. FAN decreased the production of inflammatory cytokines and ROS in human FLS cells as well as the phosphorylation of the MAPK pathway and NF-κB pathway in human FLS cells. The behavioral parameters in the C/K rat model and CIA mouse model and inflammatory signs in the histological analysis were found to be ameliorated in FAN-treated groups. Cartilage degradation in CIA mice knee joints were shown to have been suppressed by FAN. These findings suggest that fangchinoline has the potential to be a therapeutic source for the treatment of rheumatoid arthritis.
4.The Anti-Inflammatory Activities of Benzylideneacetophenone Derivatives in LPS Stimulated BV2 Microglia Cells and Mice
Mijin KIM ; Seungmin KANG ; Seikwan OH
Biomolecules & Therapeutics 2025;33(1):106-116
A previously reported study highlighted the neuroprotective potential of the novel benzylideneacetophenone derivative, JC3, in mice. In pursuit of compounds with even more robust neuroprotective and anti-inflammatory properties compared to JC3, we synthesized substituted 1,3-diphenyl-2-propen-1-ones based on chalcones. Molecular modeling studies aimed at discerning the chemical structural features conducive to heightened biological activity revealed that JCII-8,10,11 exhibited the widest HOMOLUMO gap within this category, indicating facile electron and radical transfer between HOMO and LUMO in model assessments.From the pool of synthesized compounds, JCII-8,10,11 were selected for the present investigation. The biological assays involving JCII-8,10,11 demonstrated their concentration-dependent suppression of iNOS and COX-2 protein levels, alongside various cytokine mRNA expressions in LPS-induced murine microglial BV2 cells. Furthermore, western blot analyses were conducted to investigate the MAPK pathways and NF-κB/p65 nuclear translocation. These evaluations conclusively confirmed the inflammatory inhibition effects in both in vitro and in vivo inflammation models. These findings establish JCII-8,10,11 as potent anti-inflammatory agents, hindering inflammatory mediators and impeding NF-κB/p65 nuclear translocation via JNK and ERK MAPK phosphorylation in BV2 cells. The study positions them as potential therapeutics for inflammation-related conditions. Additionally, JCII-11 exhibited greater activity compared to other tested JCII compounds.
5.The Anti-Inflammatory Activities of Benzylideneacetophenone Derivatives in LPS Stimulated BV2 Microglia Cells and Mice
Mijin KIM ; Seungmin KANG ; Seikwan OH
Biomolecules & Therapeutics 2025;33(1):106-116
A previously reported study highlighted the neuroprotective potential of the novel benzylideneacetophenone derivative, JC3, in mice. In pursuit of compounds with even more robust neuroprotective and anti-inflammatory properties compared to JC3, we synthesized substituted 1,3-diphenyl-2-propen-1-ones based on chalcones. Molecular modeling studies aimed at discerning the chemical structural features conducive to heightened biological activity revealed that JCII-8,10,11 exhibited the widest HOMOLUMO gap within this category, indicating facile electron and radical transfer between HOMO and LUMO in model assessments.From the pool of synthesized compounds, JCII-8,10,11 were selected for the present investigation. The biological assays involving JCII-8,10,11 demonstrated their concentration-dependent suppression of iNOS and COX-2 protein levels, alongside various cytokine mRNA expressions in LPS-induced murine microglial BV2 cells. Furthermore, western blot analyses were conducted to investigate the MAPK pathways and NF-κB/p65 nuclear translocation. These evaluations conclusively confirmed the inflammatory inhibition effects in both in vitro and in vivo inflammation models. These findings establish JCII-8,10,11 as potent anti-inflammatory agents, hindering inflammatory mediators and impeding NF-κB/p65 nuclear translocation via JNK and ERK MAPK phosphorylation in BV2 cells. The study positions them as potential therapeutics for inflammation-related conditions. Additionally, JCII-11 exhibited greater activity compared to other tested JCII compounds.
6.The Anti-Inflammatory Activities of Benzylideneacetophenone Derivatives in LPS Stimulated BV2 Microglia Cells and Mice
Mijin KIM ; Seungmin KANG ; Seikwan OH
Biomolecules & Therapeutics 2025;33(1):106-116
A previously reported study highlighted the neuroprotective potential of the novel benzylideneacetophenone derivative, JC3, in mice. In pursuit of compounds with even more robust neuroprotective and anti-inflammatory properties compared to JC3, we synthesized substituted 1,3-diphenyl-2-propen-1-ones based on chalcones. Molecular modeling studies aimed at discerning the chemical structural features conducive to heightened biological activity revealed that JCII-8,10,11 exhibited the widest HOMOLUMO gap within this category, indicating facile electron and radical transfer between HOMO and LUMO in model assessments.From the pool of synthesized compounds, JCII-8,10,11 were selected for the present investigation. The biological assays involving JCII-8,10,11 demonstrated their concentration-dependent suppression of iNOS and COX-2 protein levels, alongside various cytokine mRNA expressions in LPS-induced murine microglial BV2 cells. Furthermore, western blot analyses were conducted to investigate the MAPK pathways and NF-κB/p65 nuclear translocation. These evaluations conclusively confirmed the inflammatory inhibition effects in both in vitro and in vivo inflammation models. These findings establish JCII-8,10,11 as potent anti-inflammatory agents, hindering inflammatory mediators and impeding NF-κB/p65 nuclear translocation via JNK and ERK MAPK phosphorylation in BV2 cells. The study positions them as potential therapeutics for inflammation-related conditions. Additionally, JCII-11 exhibited greater activity compared to other tested JCII compounds.
7.Sleep-Aids Derived from Natural Products.
Zhenzhen HU ; Seikwan OH ; Tae Woo HA ; Jin Tae HONG ; Ki Wan OH
Biomolecules & Therapeutics 2018;26(4):343-349
Although drugs such as barbiturates and benzodiazepines are often used for the treatment of insomnia, they are associated with various side effects such as habituations, tolerance and addiction. Alternatively, natural products with minimal unwanted effects have been preferred for the treatment of acute and/or mild insomnia, with additional benefits of overall health-promotion. Basic and clinical researches on the mechanisms of action of natural products have been carried out so far in insomnia treatments. Recent studies have been focusing on diverse chemical components available in natural products, with an interest of developing drugs that can improve sleep duration and quality. In the last 15 years, our co-workers have been actively looking for candidate substances from natural products that can relieve insomnia. This review is, therefore, intended to bring pharmacological data regarding to the effects of natural products on sleep duration and quality, mainly through the activation of GABAA receptors. It is imperative that phytochemicals will provide useful information during electroencephalography (EEG) analysis and serve as an alternative medications for insomnia patients who are reluctant to use conventional drugs.
Barbiturates
;
Benzodiazepines
;
Biological Products*
;
Electroencephalography
;
Humans
;
Phytochemicals
;
Sleep Initiation and Maintenance Disorders
8.Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Plays Critical Role in Psychostimulant-Induced Depression.
Qing MENG ; Hyoung Chun KIM ; Seikwan OH ; Yong Moon LEE ; Zhenzhen HU ; Ki Wan OH
Biomolecules & Therapeutics 2018;26(5):425-431
Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter expressed in the central nervous systems. Previously, several reports demonstrated that nucleus accumbal-injected CART peptide positively modulated behavioral sensitization induced by psychostimulants and regulated the mesocorticolimbic dopaminergic pathway. It is confirmed that CART peptide exerted inhibitory effect on psychostimulant-enhanced dopamine receptors signaling, Ca2+/calmodulin-dependent kinase signaling and crucial transcription factors expression. Besides modulation of dopamine receptors-related pathways, CART peptide also exhibited elaborated interactions with other neurotransmitter receptors, such as glutamate receptors and γ-aminobutyric acid receptors, which further account for attribution of CART peptide to inhibition of psychostimulant-potentiated locomotor activity. Recently, CART peptide has been shown to have anxiolytic functions on the aversive mood and uncontrolled drug-seeking behaviors following drug withdrawal. Moreover, microinjection of CART peptide has been shown to have an anti-depressant effect, which suggests its potential utility in the mood regulation and avoidance of depression-like behaviors. In this review, we discuss CART pathways in neural circuits and their interactions with neurotransmitters associated with psychostimulant-induced depression.
Central Nervous System
;
Depression*
;
Dopamine
;
Drug-Seeking Behavior
;
Microinjections
;
Motor Activity
;
Neurotransmitter Agents
;
Phosphotransferases
;
Receptors, Dopamine
;
Receptors, Glutamate
;
Receptors, Neurotransmitter
;
Transcription Factors
9.Administration of Phytoceramide Enhances Memory and Upregulates the Expression of pCREB and BDNF in Hippocampus of Mice.
Yeonju LEE ; Jieun KIM ; Soyong JANG ; Seikwan OH
Biomolecules & Therapeutics 2013;21(3):229-233
This study was aimed at investigating the possible effects of phytoceramide (Pcer) on learning and memory and their underlying mechanisms. Phytoceramide was orally administered to ICR mice for 7 days. Memory performances were assessed using the passive avoidance test and Y-maze task. The expressions of phosphorylated cAMP response element binding protein (pCREB), brain-derived neurotrophic factor (BDNF) were measured with immunoblot. The incorporation of 5-bromo-2-deoxyuridine (BrdU) in hippocampal regions was investigated by using immunohistochemical methods. Treatment of Pcer enhanced cognitive performances in the passive avoidance test and Y-maze task. Immunoblotting studies revealed that the phosphorylated CREB and BDNF were significantly increased on hippocampus in the Pcer-treated mice. Immunohistochemical studies showed that the number of immunopositive cells to BrdU was significantly increased in the hippocampal dentate gyrus regions after Pcer-treatment for 7 days. These results suggest that Pcer contribute to enhancing memory and BDNF expression and it could be secondary to the elevation of neurogenesis.
Animals
;
Brain-Derived Neurotrophic Factor*
;
Bromodeoxyuridine
;
Cyclic AMP Response Element-Binding Protein
;
Dentate Gyrus
;
Hippocampus*
;
Immunoblotting
;
Learning
;
Memory*
;
Methods
;
Mice*
;
Mice, Inbred ICR
;
Neurogenesis
10.Sphingosine mediates FTY720-induced apoptosis in LLC-PK1 cells.
Woo Jin LEE ; Hwan Soo YOO ; Pann Ghill SUH ; Jong Seok LIM ; Seikwan OH ; Yong Moon LEE
Experimental & Molecular Medicine 2004;36(5):420-427
FTY720, a synthetic sphingoid base analog, was examined as a new sphingosine kinase inhibitor, which converts endogenous sphingosine into its phosphate form. With 20 micrometer of FTY720, sphingosine accumulated in the LLC-PK1 cells in a time- and dose-dependent manner. The FTY720 treated cells showed a high concentration of fragmented DNA, a high caspase-3 like activity and TUNEL staining cells. It was also found that the sphingosine and sphinganine level increased in a time- and dose-dependent manner within 12 h after the FTY720 treatment. The sphingosine kinase activity was reduced by FTY720 as much as other sphingosine kinase inhibitors, N, N-dimethylsphingosine (DMS), dl-threo-dihydrosphingosine (DHS). The fragmented DNA content as a result of the 20 micrometer of FTY720 treatment and by 5 micrometer of the exogenously added BSA-sphingosine complex indicated typical apoptosis. Under similar conditions, the accumulated sphingosine concentration in all the cells was almost identical even though the sphingosine distribution inside the cells was somewhat different. These results indicate that the FTY720 induced apoptosis is associated with the inhibition of the sphingosine kinase activity and is strongly associated with the successive accumulation of sphingosine.
Animals
;
Apoptosis/*physiology
;
Caspases/biosynthesis
;
Cell Line
;
DNA Fragmentation
;
Endothelial Cells/drug effects
;
Enzyme Inhibitors/*pharmacology
;
Kidney/cytology
;
Phosphotransferases (Alcohol Group Acceptor)/*antagonists & inhibitors/physiology
;
Propylene Glycols/*pharmacology
;
Research Support, Non-U.S. Gov't
;
Sphingosine/pharmacology/*physiology
;
Swine
;
Up-Regulation