1.Activities for the Development of Targeted Radionuclide Therapy in Japan
Korean Journal of Nuclear Medicine 2019;53(1):35-37
Targeted radionuclide therapy (TRT) is unique because of its efficacy and its theranostic feature in the era of precision medicine. So far, introduction of new TRT has not been going well in Japan due to several reasons including strict regulations, shortage of facilities for TRT, and insufficient reimbursement for TRT in clinic. Japanese community had several strategies to develop TRT in these 10 years, including the establishment of the National Conference for Nuclear Medicine Theranostics in which physicians, scientists, patients, people supporting patients, and industrial people gather. To promote TRTwith supports from the government, the preparatory committee for the establishment of Japan Foundation of Medical Isotope Development (JAFMID) was launched. I would like to call TRT “Precision Nuclear Medicine.†When we can add genomic information here, we can put it to new stage of cancer therapy. It is time for us.
2.Activities for the Development of Targeted Radionuclide Therapy in Japan
Korean Journal of Nuclear Medicine 2019;53(1):35-37
Targeted radionuclide therapy (TRT) is unique because of its efficacy and its theranostic feature in the era of precision medicine. So far, introduction of new TRT has not been going well in Japan due to several reasons including strict regulations, shortage of facilities for TRT, and insufficient reimbursement for TRT in clinic. Japanese community had several strategies to develop TRT in these 10 years, including the establishment of the National Conference for Nuclear Medicine Theranostics in which physicians, scientists, patients, people supporting patients, and industrial people gather. To promote TRTwith supports from the government, the preparatory committee for the establishment of Japan Foundation of Medical Isotope Development (JAFMID) was launched. I would like to call TRT “Precision Nuclear Medicine.” When we can add genomic information here, we can put it to new stage of cancer therapy. It is time for us.
Asian Continental Ancestry Group
;
Humans
;
Japan
;
Nuclear Medicine
;
Precision Medicine
;
Social Control, Formal
;
Theranostic Nanomedicine
3.Current Consensus on I-131 MIBG Therapy
Korean Journal of Nuclear Medicine 2018;52(4):254-265
Metaiodobenzylguanidine (MIBG) is structurally similar to the neurotransmitter norepinephrine and specifically targets neuroendocrine cells including some neuroendocrine tumors. Iodine-131 (I-131)-labeled MIBG (I-131 MIBG) therapy for neuroendocrine tumors has been performed for more than a quarter-century. The indications of I-131 MIBG therapy include treatment-resistant neuroblastoma (NB), unresectable or metastatic pheochromocytoma (PC) and paraganglioma (PG), unresectable or metastatic carcinoid tumors, and unresectable or metastatic medullary thyroid cancer (MTC). I-131 MIBG therapy is one of the considerable effective treatments in patients with advanced NB, PC, and PG. On the other hand, I-131 MIBG therapy is an alternative method after more effective novel therapies are used such as radiolabeled somatostatin analogs and tyrosine kinase inhibitors in patients with advanced carcinoid tumors and MTC. No-carrier-aided (NCA) I-131 MIBG has more favorable potential compared to the conventional I-131 MIBG. Astatine-211-labeled meta-astatobenzylguanidine (At-211 MABG) has massive potential in patients with neuroendocrine tumors. Further studies about the therapeutic protocols of I-131 MIBG including NCA I-131 MIBG in the clinical setting and At-211 MABG in both the preclinical and clinical settings are needed.
4.Current Consensus on I-131 MIBG Therapy
Korean Journal of Nuclear Medicine 2018;52(4):254-265
Metaiodobenzylguanidine (MIBG) is structurally similar to the neurotransmitter norepinephrine and specifically targets neuroendocrine cells including some neuroendocrine tumors. Iodine-131 (I-131)-labeled MIBG (I-131 MIBG) therapy for neuroendocrine tumors has been performed for more than a quarter-century. The indications of I-131 MIBG therapy include treatment-resistant neuroblastoma (NB), unresectable or metastatic pheochromocytoma (PC) and paraganglioma (PG), unresectable or metastatic carcinoid tumors, and unresectable or metastatic medullary thyroid cancer (MTC). I-131 MIBG therapy is one of the considerable effective treatments in patients with advanced NB, PC, and PG. On the other hand, I-131 MIBG therapy is an alternative method after more effective novel therapies are used such as radiolabeled somatostatin analogs and tyrosine kinase inhibitors in patients with advanced carcinoid tumors and MTC. No-carrier-aided (NCA) I-131 MIBG has more favorable potential compared to the conventional I-131 MIBG. Astatine-211-labeled meta-astatobenzylguanidine (At-211 MABG) has massive potential in patients with neuroendocrine tumors. Further studies about the therapeutic protocols of I-131 MIBG including NCA I-131 MIBG in the clinical setting and At-211 MABG in both the preclinical and clinical settings are needed.
3-Iodobenzylguanidine
;
Carcinoid Tumor
;
Consensus
;
Hand
;
Humans
;
Methods
;
Neuroblastoma
;
Neuroendocrine Cells
;
Neuroendocrine Tumors
;
Neurotransmitter Agents
;
Norepinephrine
;
Paraganglioma
;
Pheochromocytoma
;
Protein-Tyrosine Kinases
;
Somatostatin
;
Thyroid Neoplasms