1.Phenotype of Relapsing Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease in Children
Ji Yeon HAN ; Soo Yeon KIM ; Woojoong KIM ; Hunmin KIM ; Anna CHO ; Jieun CHOI ; Jong-Hee CHAE ; Ki Joong KIM ; Young Se KWON ; Il Han YOO ; Byung Chan LIM
Journal of Clinical Neurology 2025;21(1):65-73
Background:
and Purpose To determine the clinical phenotypes, relapse timing, treatment responses, and outcomes of children with relapsing myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD).
Methods:
We collected the demographic, clinical, laboratory, and radiological data of patients aged <18 years who had been diagnosed with MOGAD at Seoul National University Children’s Hospital between January 2010 and January 2022; 100 were identified as positive for MOG antibodies, 43 of whom experienced relapse.
Results:
The median age at onset was 7 years (range 2–16 years). The median number of relapses was 2 (range 1–8), and patients were followed up for a median of 65 months (range 5–214 months). The first relapse was experienced before 3 months from onset by 15 patients (34.9%). The most-common initial phenotypes were acute disseminated encephalomyelitis (n=17, 39.5%) and optic neuritis (ON; n=11, 25.6%). The most-common relapse phenotypes were neuromyelitis optica spectrum disorder (n=9, 20.9%), relapsing ON (n=6, 14.0%), and multiphasic disseminated encephalomyelitis (n=6, 14.0%). Many of the patients (n=18, 41.9%) were not specifically categorized. A high proportion of these patients had non-acute disseminated encephalomyelitis encephalitis. Atypical phenotypes such as prolonged fever or hemiplegic migraine-like episodes were also noted. Mycophenolate mofetil and cyclic immunoglobulin treatment significantly reduced the annual relapse rates.
Conclusions
Our 43 pediatric patients with relapsing MOGAD showed a tendency toward early relapse and various relapse phenotypes. The overall prognoses of these patients were good regardless of phenotype or response to second-line immunosuppressant treatment.
2.Phenotype of Relapsing Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease in Children
Ji Yeon HAN ; Soo Yeon KIM ; Woojoong KIM ; Hunmin KIM ; Anna CHO ; Jieun CHOI ; Jong-Hee CHAE ; Ki Joong KIM ; Young Se KWON ; Il Han YOO ; Byung Chan LIM
Journal of Clinical Neurology 2025;21(1):65-73
Background:
and Purpose To determine the clinical phenotypes, relapse timing, treatment responses, and outcomes of children with relapsing myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD).
Methods:
We collected the demographic, clinical, laboratory, and radiological data of patients aged <18 years who had been diagnosed with MOGAD at Seoul National University Children’s Hospital between January 2010 and January 2022; 100 were identified as positive for MOG antibodies, 43 of whom experienced relapse.
Results:
The median age at onset was 7 years (range 2–16 years). The median number of relapses was 2 (range 1–8), and patients were followed up for a median of 65 months (range 5–214 months). The first relapse was experienced before 3 months from onset by 15 patients (34.9%). The most-common initial phenotypes were acute disseminated encephalomyelitis (n=17, 39.5%) and optic neuritis (ON; n=11, 25.6%). The most-common relapse phenotypes were neuromyelitis optica spectrum disorder (n=9, 20.9%), relapsing ON (n=6, 14.0%), and multiphasic disseminated encephalomyelitis (n=6, 14.0%). Many of the patients (n=18, 41.9%) were not specifically categorized. A high proportion of these patients had non-acute disseminated encephalomyelitis encephalitis. Atypical phenotypes such as prolonged fever or hemiplegic migraine-like episodes were also noted. Mycophenolate mofetil and cyclic immunoglobulin treatment significantly reduced the annual relapse rates.
Conclusions
Our 43 pediatric patients with relapsing MOGAD showed a tendency toward early relapse and various relapse phenotypes. The overall prognoses of these patients were good regardless of phenotype or response to second-line immunosuppressant treatment.
3.Phenotype of Relapsing Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease in Children
Ji Yeon HAN ; Soo Yeon KIM ; Woojoong KIM ; Hunmin KIM ; Anna CHO ; Jieun CHOI ; Jong-Hee CHAE ; Ki Joong KIM ; Young Se KWON ; Il Han YOO ; Byung Chan LIM
Journal of Clinical Neurology 2025;21(1):65-73
Background:
and Purpose To determine the clinical phenotypes, relapse timing, treatment responses, and outcomes of children with relapsing myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD).
Methods:
We collected the demographic, clinical, laboratory, and radiological data of patients aged <18 years who had been diagnosed with MOGAD at Seoul National University Children’s Hospital between January 2010 and January 2022; 100 were identified as positive for MOG antibodies, 43 of whom experienced relapse.
Results:
The median age at onset was 7 years (range 2–16 years). The median number of relapses was 2 (range 1–8), and patients were followed up for a median of 65 months (range 5–214 months). The first relapse was experienced before 3 months from onset by 15 patients (34.9%). The most-common initial phenotypes were acute disseminated encephalomyelitis (n=17, 39.5%) and optic neuritis (ON; n=11, 25.6%). The most-common relapse phenotypes were neuromyelitis optica spectrum disorder (n=9, 20.9%), relapsing ON (n=6, 14.0%), and multiphasic disseminated encephalomyelitis (n=6, 14.0%). Many of the patients (n=18, 41.9%) were not specifically categorized. A high proportion of these patients had non-acute disseminated encephalomyelitis encephalitis. Atypical phenotypes such as prolonged fever or hemiplegic migraine-like episodes were also noted. Mycophenolate mofetil and cyclic immunoglobulin treatment significantly reduced the annual relapse rates.
Conclusions
Our 43 pediatric patients with relapsing MOGAD showed a tendency toward early relapse and various relapse phenotypes. The overall prognoses of these patients were good regardless of phenotype or response to second-line immunosuppressant treatment.
4.Feasibility of a deep learning artificial intelligence model for the diagnosis of pediatric ileocolic intussusception with grayscale ultrasonography
Se Woo KIM ; Jung-Eun CHEON ; Young Hun CHOI ; Jae-Yeon HWANG ; Su-Mi SHIN ; Yeon Jin CHO ; Seunghyun LEE ; Seul Bi LEE
Ultrasonography 2024;43(1):57-67
Purpose:
This study explored the feasibility of utilizing a deep learning artificial intelligence (AI) model to detect ileocolic intussusception on grayscale ultrasound images.
Methods:
This retrospective observational study incorporated ultrasound images of children who underwent emergency ultrasonography for suspected ileocolic intussusception. After excluding video clips, Doppler images, and annotated images, 40,765 images from two tertiary hospitals were included (positive-to-negative ratio: hospital A, 2,775:35,373; hospital B, 140:2,477). Images from hospital A were split into a training set, a tuning set, and an internal test set (ITS) at a ratio of 7:1.5:1.5. Images from hospital B comprised an external test set (ETS). For each image indicating intussusception, two radiologists provided a bounding box as the ground-truth label. If intussusception was suspected in the input image, the model generated a bounding box with a confidence score (0-1) at the estimated lesion location. Average precision (AP) was used to evaluate overall model performance. The performance of practical thresholds for the modelgenerated confidence score, as determined from the ITS, was verified using the ETS.
Results:
The AP values for the ITS and ETS were 0.952 and 0.936, respectively. Two confidence thresholds, CTopt and CTprecision, were set at 0.557 and 0.790, respectively. For the ETS, the perimage precision and recall were 95.7% and 80.0% with CTopt, and 98.4% and 44.3% with CTprecision. For per-patient diagnosis, the sensitivity and specificity were 100.0% and 97.1% with CTopt, and 100.0% and 99.0% with CTprecision. The average number of false positives per patient was 0.04 with CTopt and 0.01 for CTprecision.
Conclusion
The feasibility of using an AI model to diagnose ileocolic intussusception on ultrasonography was demonstrated. However, further study involving bias-free data is warranted for robust clinical validation.
5.Observation of neutrophil extracellular traps in the development of diabetic nephropathy using diabetic murine models
You Hyun JEON ; Se-Hyun OH ; Soo-Jung JUNG ; Eun-Joo OH ; Jeong-Hoon LIM ; Hee-Yeon JUNG ; Ji-Young CHOI ; Sun-Hee PARK ; Chan-Duck KIM ; Yong-Lim KIM ; Chang-Won HONG ; Jang-Hee CHO
Laboratory Animal Research 2024;40(4):424-434
Background:
Diabetic nephropathy (DN) is a progressive complication among patients with diabetes and the most common cause of end-stage kidney disease. Neutrophil extracellular traps (NETs) are known to play a role in kidney disease, thus this study aimed to determine their role in the development of diabetic kidney disease using diabetic murine models.
Results:
Protein and histological analyses revealed that db/db mice and streptozotocin DN models expressed no significant NET-related proteins, myeloperoxidase, citrullinated histone H3 (citH3), neutrophil elastase, and lymphocyte antigen 6 complex locus G6D (Ly6G). However, the inflamed individuals in the DN model showed that citH3 and Ly6G were highly deposited in the renal system based on immunohistochemistry images. In vitro, NET treatment did not induce apoptosis in glomerular endothelial and renal tubular epithelial cells. NET inhibition by DNase administration demonstrated no significant changes in cell apoptosis.
Conclusions
NET-related proteins were only expressed in the DN model with tubulointerstitial inflammation. Our study revealed that NETs are only induced in mice with hyperglycemia-induced inflammation.
6.Observation of neutrophil extracellular traps in the development of diabetic nephropathy using diabetic murine models
You Hyun JEON ; Se-Hyun OH ; Soo-Jung JUNG ; Eun-Joo OH ; Jeong-Hoon LIM ; Hee-Yeon JUNG ; Ji-Young CHOI ; Sun-Hee PARK ; Chan-Duck KIM ; Yong-Lim KIM ; Chang-Won HONG ; Jang-Hee CHO
Laboratory Animal Research 2024;40(4):424-434
Background:
Diabetic nephropathy (DN) is a progressive complication among patients with diabetes and the most common cause of end-stage kidney disease. Neutrophil extracellular traps (NETs) are known to play a role in kidney disease, thus this study aimed to determine their role in the development of diabetic kidney disease using diabetic murine models.
Results:
Protein and histological analyses revealed that db/db mice and streptozotocin DN models expressed no significant NET-related proteins, myeloperoxidase, citrullinated histone H3 (citH3), neutrophil elastase, and lymphocyte antigen 6 complex locus G6D (Ly6G). However, the inflamed individuals in the DN model showed that citH3 and Ly6G were highly deposited in the renal system based on immunohistochemistry images. In vitro, NET treatment did not induce apoptosis in glomerular endothelial and renal tubular epithelial cells. NET inhibition by DNase administration demonstrated no significant changes in cell apoptosis.
Conclusions
NET-related proteins were only expressed in the DN model with tubulointerstitial inflammation. Our study revealed that NETs are only induced in mice with hyperglycemia-induced inflammation.
7.Feasibility of a deep learning artificial intelligence model for the diagnosis of pediatric ileocolic intussusception with grayscale ultrasonography
Se Woo KIM ; Jung-Eun CHEON ; Young Hun CHOI ; Jae-Yeon HWANG ; Su-Mi SHIN ; Yeon Jin CHO ; Seunghyun LEE ; Seul Bi LEE
Ultrasonography 2024;43(1):57-67
Purpose:
This study explored the feasibility of utilizing a deep learning artificial intelligence (AI) model to detect ileocolic intussusception on grayscale ultrasound images.
Methods:
This retrospective observational study incorporated ultrasound images of children who underwent emergency ultrasonography for suspected ileocolic intussusception. After excluding video clips, Doppler images, and annotated images, 40,765 images from two tertiary hospitals were included (positive-to-negative ratio: hospital A, 2,775:35,373; hospital B, 140:2,477). Images from hospital A were split into a training set, a tuning set, and an internal test set (ITS) at a ratio of 7:1.5:1.5. Images from hospital B comprised an external test set (ETS). For each image indicating intussusception, two radiologists provided a bounding box as the ground-truth label. If intussusception was suspected in the input image, the model generated a bounding box with a confidence score (0-1) at the estimated lesion location. Average precision (AP) was used to evaluate overall model performance. The performance of practical thresholds for the modelgenerated confidence score, as determined from the ITS, was verified using the ETS.
Results:
The AP values for the ITS and ETS were 0.952 and 0.936, respectively. Two confidence thresholds, CTopt and CTprecision, were set at 0.557 and 0.790, respectively. For the ETS, the perimage precision and recall were 95.7% and 80.0% with CTopt, and 98.4% and 44.3% with CTprecision. For per-patient diagnosis, the sensitivity and specificity were 100.0% and 97.1% with CTopt, and 100.0% and 99.0% with CTprecision. The average number of false positives per patient was 0.04 with CTopt and 0.01 for CTprecision.
Conclusion
The feasibility of using an AI model to diagnose ileocolic intussusception on ultrasonography was demonstrated. However, further study involving bias-free data is warranted for robust clinical validation.
8.Observation of neutrophil extracellular traps in the development of diabetic nephropathy using diabetic murine models
You Hyun JEON ; Se-Hyun OH ; Soo-Jung JUNG ; Eun-Joo OH ; Jeong-Hoon LIM ; Hee-Yeon JUNG ; Ji-Young CHOI ; Sun-Hee PARK ; Chan-Duck KIM ; Yong-Lim KIM ; Chang-Won HONG ; Jang-Hee CHO
Laboratory Animal Research 2024;40(4):424-434
Background:
Diabetic nephropathy (DN) is a progressive complication among patients with diabetes and the most common cause of end-stage kidney disease. Neutrophil extracellular traps (NETs) are known to play a role in kidney disease, thus this study aimed to determine their role in the development of diabetic kidney disease using diabetic murine models.
Results:
Protein and histological analyses revealed that db/db mice and streptozotocin DN models expressed no significant NET-related proteins, myeloperoxidase, citrullinated histone H3 (citH3), neutrophil elastase, and lymphocyte antigen 6 complex locus G6D (Ly6G). However, the inflamed individuals in the DN model showed that citH3 and Ly6G were highly deposited in the renal system based on immunohistochemistry images. In vitro, NET treatment did not induce apoptosis in glomerular endothelial and renal tubular epithelial cells. NET inhibition by DNase administration demonstrated no significant changes in cell apoptosis.
Conclusions
NET-related proteins were only expressed in the DN model with tubulointerstitial inflammation. Our study revealed that NETs are only induced in mice with hyperglycemia-induced inflammation.
9.Feasibility of a deep learning artificial intelligence model for the diagnosis of pediatric ileocolic intussusception with grayscale ultrasonography
Se Woo KIM ; Jung-Eun CHEON ; Young Hun CHOI ; Jae-Yeon HWANG ; Su-Mi SHIN ; Yeon Jin CHO ; Seunghyun LEE ; Seul Bi LEE
Ultrasonography 2024;43(1):57-67
Purpose:
This study explored the feasibility of utilizing a deep learning artificial intelligence (AI) model to detect ileocolic intussusception on grayscale ultrasound images.
Methods:
This retrospective observational study incorporated ultrasound images of children who underwent emergency ultrasonography for suspected ileocolic intussusception. After excluding video clips, Doppler images, and annotated images, 40,765 images from two tertiary hospitals were included (positive-to-negative ratio: hospital A, 2,775:35,373; hospital B, 140:2,477). Images from hospital A were split into a training set, a tuning set, and an internal test set (ITS) at a ratio of 7:1.5:1.5. Images from hospital B comprised an external test set (ETS). For each image indicating intussusception, two radiologists provided a bounding box as the ground-truth label. If intussusception was suspected in the input image, the model generated a bounding box with a confidence score (0-1) at the estimated lesion location. Average precision (AP) was used to evaluate overall model performance. The performance of practical thresholds for the modelgenerated confidence score, as determined from the ITS, was verified using the ETS.
Results:
The AP values for the ITS and ETS were 0.952 and 0.936, respectively. Two confidence thresholds, CTopt and CTprecision, were set at 0.557 and 0.790, respectively. For the ETS, the perimage precision and recall were 95.7% and 80.0% with CTopt, and 98.4% and 44.3% with CTprecision. For per-patient diagnosis, the sensitivity and specificity were 100.0% and 97.1% with CTopt, and 100.0% and 99.0% with CTprecision. The average number of false positives per patient was 0.04 with CTopt and 0.01 for CTprecision.
Conclusion
The feasibility of using an AI model to diagnose ileocolic intussusception on ultrasonography was demonstrated. However, further study involving bias-free data is warranted for robust clinical validation.
10.Observation of neutrophil extracellular traps in the development of diabetic nephropathy using diabetic murine models
You Hyun JEON ; Se-Hyun OH ; Soo-Jung JUNG ; Eun-Joo OH ; Jeong-Hoon LIM ; Hee-Yeon JUNG ; Ji-Young CHOI ; Sun-Hee PARK ; Chan-Duck KIM ; Yong-Lim KIM ; Chang-Won HONG ; Jang-Hee CHO
Laboratory Animal Research 2024;40(4):424-434
Background:
Diabetic nephropathy (DN) is a progressive complication among patients with diabetes and the most common cause of end-stage kidney disease. Neutrophil extracellular traps (NETs) are known to play a role in kidney disease, thus this study aimed to determine their role in the development of diabetic kidney disease using diabetic murine models.
Results:
Protein and histological analyses revealed that db/db mice and streptozotocin DN models expressed no significant NET-related proteins, myeloperoxidase, citrullinated histone H3 (citH3), neutrophil elastase, and lymphocyte antigen 6 complex locus G6D (Ly6G). However, the inflamed individuals in the DN model showed that citH3 and Ly6G were highly deposited in the renal system based on immunohistochemistry images. In vitro, NET treatment did not induce apoptosis in glomerular endothelial and renal tubular epithelial cells. NET inhibition by DNase administration demonstrated no significant changes in cell apoptosis.
Conclusions
NET-related proteins were only expressed in the DN model with tubulointerstitial inflammation. Our study revealed that NETs are only induced in mice with hyperglycemia-induced inflammation.

Result Analysis
Print
Save
E-mail