1.Anti-endometritis effect of carbonized Scutellariae Radix in mice induced by LPS via inhibiting cell pyroptosis through IKBKE/NLRP3 signaling axis.
Hong TAO ; Rang-Rang TANG ; Qing SU ; Li HUANG ; Li-Li LI ; De-Ling WU ; Qi HUANG
China Journal of Chinese Materia Medica 2025;50(11):3024-3034
This paper investigated the inhibitory effect of carbonized Scutellariae Radix(Cb-SR) on pyroptosis in endometrial epithelial cells of mice with endometritis and its correlation with the IKBKE/NLRP3 signaling axis. Mice model of endometritis was established by using an intrauterine injection of 10 μL polysaccharides(LPS, 5 mg·mL~(-1)), and the mice were randomly divided into model group(LPS), low-dose group of Cb-SR(L-Cb-SR, 0.55 g·kg~(-1)), medium-dose group of Cb-SR(M-Cb-SR, 1.10 g·kg~(-1)), high-dose group of Cb-SR(H-Cb-SR, 2.20 g·kg~(-1)), crude Scutellariae Radix group(Cr-SR, 1.63 g·kg~(-1)), and Fuke Qianjin Capsule group(FQC, 0.30 g·kg~(-1)), with 10 mice in each group. Ten healthy female mice were selected and injected with PBS of equal volume into the bilateral uterus, and they were set as the sham group. The mice in the drug treatment groups were given the corresponding doses of Cb-SR, Cr-SR, FQC, or physiological saline of equal volume by gavage twice a day for seven days. Thirty minutes after the last administration, each mouse was euthanized by cervical dislocation. Hematoxylin-eosin(HE) staining and transmission electron microscopy were applied to observe the histopathological morphology of the uterine tissue. Immunohistochemistry was used to detect the expression of CD38 and CD138. Myeloperoxidase(MPO) values in neutrophils were measured by the kit; Enzyme-linked immunosorbent assay(ELISA) was used to measure the secretion of interleukin-18(IL-18), interleukin-1β(IL-1β), and tumor necrosis factor-α(TNF-α). Immunofluorescence and Western blot were used to analyze the expression of the proteins related to the IKBKE/NLRP3 signaling axis. Mouse endometrial epithelial cells(MEECs) were separated and purified from the uterine tissue of pregnant female mice through in vitro experiments and injured by LPS for 24 h, and then they were cultured with Cb-SR-containing serum. The anti-endometritis effect of Cb-SR was investigated by CCK-8 assay, scanning electron microscopy, and Western blot. The results showed that Cb-SR significantly reduced MPO values, attenuated uterine tissue damage, inhibited the expression of CD38 and CD138, decreased the levels of IL-1β, IL-18, and TNF-α, and inhibited the expression of proteins associated with IKBKE/NLRP3 signaling axis in mice with endometritis. In addition, Cb-SR-containing serum reduced swelling of MEECs organelles induced by LPS, decreased the expression of inflammatory factors, and suppressed the expression of IKBKE/NLRP3 signaling axis-related proteins. These results suggest that Cb-SR can inhibit endometrial epithelial cell pyroptosis in endometritis by suppressing the IKBKE/NLRP3 signaling axis.
Animals
;
Female
;
Mice
;
Pyroptosis/drug effects*
;
Signal Transduction/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Drugs, Chinese Herbal/chemistry*
;
Endometritis/chemically induced*
;
Lipopolysaccharides/adverse effects*
;
Scutellaria baicalensis/chemistry*
;
Humans
;
Epithelial Cells/drug effects*
2.Coptidis Rhizoma-Scutellariae Radix alleviates CpG1826-induced cytokine storm secondary lung injury in mice by inhibiting mPTP/NLRP3 pyroptosis pathway.
Qing-Rui ZHONG ; Hong-Kai HUANG ; Yue-Jia LAN ; Huan WANG ; Yong ZENG ; Jia-Si WU
China Journal of Chinese Materia Medica 2025;50(15):4141-4152
This study aims to investigate the therapeutic effects of the Coptidis Rhizoma-Scutellariae Radix on cytokine storm secondary lung injury(CSSLI) induced by CpG1826 in mice, and to elucidate the potential molecular mechanisms by which its major active components, i.e., coptisine and wogonin, alleviate CSSLI by inhibiting the mitochondrial permeability transition pore(mPTP)/nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3) inflammasome pyroptosis pathway. In vivo, a mouse model of CSSLI was established by CpG1826 induction. Pulmonary edema was assessed by lung wet-to-dry weight ratio(W/D), lung injury was evaluated by hematoxylin-eosin(HE) staining, and ultrastructural changes in lung tissue were observed by transmission electron microscopy(TEM). The levels of interleukin(IL)-1β, high mobility group box 1 protein(HMGB1), IL-18, and IL-1α in bronchoalveolar lavage fluid were measured by enzyme-linked immunosorbent assay(ELISA). The results showed that the decoction of the Coptidis Rhizoma-Scutellariae Radix significantly reduced pulmonary edema, alleviated lung injury, and decreased the concentrations of related cytokines in BALF more effectively than either single herb alone, thereby improving CSSLI. In vitro, a CpG1826-induced CSSLI model was established in mouse alveolar macrophage MH-S cells. Calcein-AM quenching was used to screen for the most effective monomer components from the herb pair in inhibiting mPTP opening. Coptisine(5, 10, 20 μmol·L~(-1)) and wogonin(10, 20, 40 μmol·L~(-1)) markedly inhibited mPTP opening, with optimal effects and a clear dose-dependent pattern. These components suppressed mPTP opening, thereby reducing the release of mitochondrial DNA(mtDNA) and the accumulation of reactive oxygen species(ROS), effectively reversing the CpG1826-induced decrease in mitochondrial membrane potential(MMP). Further studies revealed that both coptisine and wogonin inhibited pyroptosis and downregulated the expression of key proteins in the NLRP3/Caspase-1/gasdermin D(GSDMD) pathway. In conclusion, the Coptidis Rhizoma-Scutellariae Radix improves CpG1826-induced CSSLI in mice, and this effect is associated with the inhibition of the mPTP/NLRP3 pyroptosis pathway, providing scientific evidence for its clinical application and further development.
Animals
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Pyroptosis/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
;
Male
;
Lung Injury/immunology*
;
Cytokines/immunology*
;
Scutellaria baicalensis/chemistry*
;
Oligodeoxyribonucleotides/adverse effects*
;
Mice, Inbred C57BL
;
Coptis chinensis
3.Oroxylin A inhibits UVB-induced non-melanoma skin cancer by regulating XPA degradation.
Renjie DOU ; Jiarui SUN ; Hang YANG ; Yufen ZHENG ; Kang YUAN ; Lei QIANG ; Run MA ; Yunyao LIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(6):742-753
Oroxylin A (OA), a natural compound extracted from Scutellaria baicalensis, demonstrates preventive potential against ultraviolet B (UVB)-induced non-melanoma skin cancer (NMSC), the most prevalent cancer worldwide with increasing incidence. Utilizing SKH-1 hairless mice exposed to UVB, this study showed that OA delayed NMSC onset and alleviated acute skin damage. Mechanistic investigations revealed its dual action: inhibiting inflammation and enhancing nucleotide excision repair (NER) by stabilizing XPA, a crucial deoxyribonucleic acid (DNA) repair protein. This stabilization occurred through OA's interaction with glucose-regulated protein 94 (GRP94), which disrupted murine double minute 2 (MDM2)-mediated XPA ubiquitination and proteasomal degradation. By maintaining XPA levels, OA expedited photoproduct clearance and diminished genomic instability, ultimately impeding NMSC development. These findings suggest OA as a promising chemopreventive agent targeting the GRP94/MDM2-XPA axis to counteract UVB-induced carcinogenesis.
Animals
;
Ultraviolet Rays/adverse effects*
;
Skin Neoplasms/prevention & control*
;
Flavonoids/pharmacology*
;
Mice
;
Xeroderma Pigmentosum Group A Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-mdm2/genetics*
;
DNA Repair/drug effects*
;
Scutellaria baicalensis/chemistry*
;
Mice, Hairless
;
Skin/radiation effects*
4.First-in-class drug oroxylin A tablets for treating hepatic and gastrointestinal disorders: from preclinical development to clinical research.
Chengju LUO ; Xuhong LI ; Yuan GAO ; Junyi YANG ; Weiming FANG ; Libin WEI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):801-814
Oroxylin A (OA) is a natural flavonoid primarily derived from the plants Oroxylum indicum and Scutellaria baicalensis. Currently, OA is obtainable through chemical synthesis and exhibits polypharmacological properties, including anti-cancer, anti-inflammatory, anti-microbial, and multi-organ protective effects. The first-in-class drug OA tablets are presently undergoing phase Ib/IIa clinical trials for hepatocellular carcinoma (HCC) treatment. Substantial evidence suggests that OA demonstrates therapeutic potential against various hepatic and gastrointestinal (GI) disorders, including HCC, hepatic fibrosis, fatty liver disease, hepatitis, liver injury, colitis, and colorectal cancer (CRC). OA exerts its therapeutic effects primarily by modulating several crucial signaling pathways, including those associated with apoptosis, oxidative stress, inflammation, glucolipid metabolism, and fibrosis activation. The oral pharmacokinetics of OA is characterized by phase II metabolism, hydrolysis, and enterohepatic recycling. This review provides a comprehensive overview of the critical stages involved in the development of OA tablets, presenting a holistic perspective on the progression of this first-in-class drug from preclinical to clinical phases. It encompasses the synthesis of active pharmaceutical ingredients, pharmacokinetics, pharmacological efficacy, toxicology, drug delivery, and recent advancements in clinical trials. Importantly, this review examines the potential mechanisms by which OA may influence the gut-liver axis, hypothesizing that these interactions may confer health benefits associated with OA that transcend the limitations posed by its poor bioavailability.
Humans
;
Flavonoids/pharmacokinetics*
;
Tablets
;
Animals
;
Gastrointestinal Diseases/drug therapy*
;
Liver Diseases/drug therapy*
;
Drug Development
;
Clinical Trials as Topic
;
Scutellaria baicalensis/chemistry*
5.Comparative study on metabolites in rat liver microsomes, urine, feces and bile between Shuganning Injection and Scutellariae Radix extract.
Feng HE ; Yang ZHOU ; Yue PENG ; Lin ZHENG ; Ling WANG ; Yong HUANG ; Ming-Yan CHI
China Journal of Chinese Materia Medica 2024;49(23):6500-6511
This study aims to compare the metabolic differences of baicalin and its analogues between Shuganning Injection and Scutellariae Radix extract. Twelve SD rats were randomly divided into a Shuganning Injection group and a Scutellariae Radix extract group, with 6 rats in each group. Their liver microsomes were incubated with the drugs, and then the samples were collected. Ultra performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) was used to analyze the prototype components and metabolites of the drugs in liver microsomes of each group. Another 12 SD rats were also divided into a Shuganning Injection group and a Scutellariae Radix extract group, with 6 rats in each group. The rats were administrated with 4.2 mL·kg~(-1) Shuganning Injection or Scutellariae Radix extract by tail vein injection. After 48 h, the rat urine, feces, and bile were collected, and UPLC-Q-Exactive Orbitrap-MS was used to analyze the prototype components and metabolites in each biological sample. The results showed that 5 prototype components and 8 metabolites of Shuganning Injection and Scutellariae Radix extract were identified in liver microsomes. A total of 5 prototype components were identified in rat urine, feces, and bile separately. Fifteen metabolites were identified in the urine, 9 metabolites in the feces, and 12 metabolites in the bile. The differences of metabolic pathways and number of metabolites of baicalin were compared between Shuganning Injection and Scutellariae Radix extract. For both Shuganning Injection and Scutellariae Radix extract, the metabolites of baicalin or baicalein in rat liver microsomes, urine, bile, and feces were mainly formed glucuronic acid conjugates, and there were a small amount of glucose conjugates and methylation products. Differences were found in the number and types of metabolites of baicalin in urine samples between Shuganning Injection and Scutellariae Radix extract, indicating that differences existed in metabolism between the two. This suggests that the other components in the formula lead to changes of metabolites in vivo.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Microsomes, Liver/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Feces/chemistry*
;
Scutellaria baicalensis/chemistry*
;
Male
;
Bile/chemistry*
;
Flavonoids/metabolism*
;
Urine/chemistry*
;
Chromatography, High Pressure Liquid
;
Mass Spectrometry
;
Plant Extracts
6.A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin.
Xin-Yang LIU ; Wei XIE ; He-Yang ZHOU ; Hui-Qing ZHANG ; Yong-Sheng JIN
Journal of Integrative Medicine 2024;22(6):621-636
Natural product-based antiviral candidates have received significant attention. However, there is a lack of sufficient research in the field of antivirals to effectively combat patterns of drug resistance. Baicalein and its glucuronide derivative baicalin are two main components extracted from Scutellaria baicalensis Georgi. They have proven to be effective against a broad range of viruses by directly killing virus particles, protecting infected cells, and targeting viral antigens on their surface, among other mechanisms. As natural products, they both possess the advantage of lower toxicity, enhanced therapeutic efficacy, and even antagonistic effects against drug-resistant viral strains. Baicalein and baicalin exhibit promising potential as potent pharmacophore scaffolds, demonstrating their antiviral properties. However, to date, no review on the antiviral effects of baicalein and baicalin has been published. This review summarizes the recent research progress on antiviral effects of baicalein and baicalin against various types of viruses both in vitro and in vivo with a focus on the dosages and underlying mechanisms. The aim is to provide a basis for the rational development and utilization of baicalein and baicalin, as well as to promote antiviral drug research. Please cite this article as: Liu XY, Xie W, Zhou HY, Zhang HQ, Jin YS. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. J Integr Med. 2024; 22(6): 621-636.
Flavanones/chemistry*
;
Flavonoids/chemistry*
;
Antiviral Agents/chemistry*
;
Humans
;
Scutellaria baicalensis/chemistry*
;
Animals
;
Glucuronides/chemistry*
7.Dead heart of pith-decayed Scutellariae Radix: a study based on multi-omics.
Jin-Xiu QIAN ; Ya-Peng WANG ; Huai-Zhu LI ; Yan-Meng LIU ; Yi-Han WANG ; Li-Ping KANG ; Tie-Gui NAN ; Jin-Fu TANG ; Zhi-Lai ZHAN
China Journal of Chinese Materia Medica 2023;48(17):4634-4646
Dead heart is an important trait of pith-decayed Scutellariae Radix. The purpose of this study was to clarify the scientific connotation of the dead heart using multi-omics. Metabolomics and transcriptomics combined with multivariate statistical analysis such as principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA) were used to systematically compare the differences in chemical composition and gene expression among phloem, outer xylem and near-dead xylem of pith-decayed Scutella-riae Radix. The results revealed significant differences in the contents of flavonoid glycosides and aglycones among the three parts. Compared with phloem and outer xylem, near-dead xylem had markedly lowered content of flavonoid glycosides(including baicalin, norwogonin-7-O-β-D-glucuronide, oroxylin A-7-O-β-D-glucuronide, and wogonoside) while markedly increased content of aglycones(including 3,5,7,2',6'-pentahydroxy dihydroflavone, baicalin, wogonin, and oroxylin A). The differentially expressed genes were mainly concentrated in KEGG pathways such as phenylpropanoid metabolism, flavonoid biosynthesis, ABC transporter, and plant MAPK signal transduction pathway. This study systematically elucidated the material basis of the dead heart of pith-decayed Scutellariae Radix with multiple growing years. Specifically, the content of flavonoid aglycones was significantly increased in the near-dead xylem, and the gene expression of metabolic pathways such as flavonoid glycoside hydrolysis, interxylary cork development and programmed apoptosis was significantly up-regulated. This study provided a theoretical basis for guiding the high-quality production of pith-decayed Scutellariae Radix.
Drugs, Chinese Herbal/chemistry*
;
Scutellaria baicalensis/chemistry*
;
Glucuronides
;
Multiomics
;
Flavonoids/chemistry*
8.Screening and molecular identification of endophytic fungi promoting accumulation of flavonoids in callus of Scutellaria baicalensis.
Xin ZHANG ; Xiao-Xuan CUI ; Yu-Guang ZHENG ; Chun-Yan SU
China Journal of Chinese Materia Medica 2023;48(18):4974-4980
To screen and identify the endophytic fungal strains that could promote the accumulation of flavonoids in the callus of Scutellaria baicalensis. Seventeen endophytic fungal strains from S. baicalensis were used to prepare mycelium elicitors and fermentation broth elicitors. Their effects on flavonoid accumulation in S. baicalensis callus were then determined. The results showed that the fermentation broth elicitors of two strains(CL79, CL105) promoted the accumulation of flavonoids. The fermentation broth elicitor of CL79 significantly promoted accumulation of baicalin, wogonoside, baicalein, and wogonin, with the maximum levels increased by 37.8%, 40.4%, 44.7%, and 42.2%(vs. blank), respectively. Similarly, the fermentation broth elicitor of CL105 significantly promoted the accumulation of baicalin, wogonoside, baicalein, and wogonin, with the maximum levels increased by 78.1%, 140.9%, 275.6%, and 208.5%(vs. blank), respectively. CL79 was identified as Alternaria alternata, and CL105 as Fusarium solani. The fermentation broth elicitors of A. alternata CL79 and F. solani CL105 were able to promote the flavonoid accumulation in the callus of S. baicalensis, which enriched the resources of endophytic fungi and provided candidate strains for the development of microbial fertili-zers for improving the quality of S. baicalensis.
Scutellaria baicalensis
;
Plant Roots
;
Flavanones
;
Flavonoids
9.Composition and morphology of Scutellariae Radix-Coptidis Rhizoma decoction co-precipitate and effect on in vivo behavior of decocting liquid.
Long-Fei LIN ; Gong-Sen CHEN ; Hui LI ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2023;48(21):5790-5797
Scutellariae Radix-Coptidis Rhizoma(SR-CR) herbal pair is commonly used in many compound prescriptions for their synergistic heat-clearing and dampness-drying properties. During the decoction process, a substantial amount of precipitate is generated. However, there have been no explicit reports on the composition, morphology, and potential effects of this precipitate on the in vivo behavior of SR-CR decoction. This study employed high-performance liquid chromatography(HPLC), high-resolution mass spectrometry, and other techniques to analyze the composition of the co-precipitate in the decoction of SR-CR. Scanning electron microscopy and mass spectrometry imaging were used to analyze its appearance and morphology. Additionally, rats were used to investigate the effects of the co-precipitate on the in vivo behavior of the main components in the SR-CR decoction. The research findings indicated that eight components, including coptisine, berberine, epiberberine, palmatine, baicalin, oroxylin A-7-O-β-D-glucuronide, wogonoside and baicalein, constituted the primary composition of the co-precipitate. Among these, baicalin and berberine hydrochloride were the most abundant, accounting for about 60% of the total weight. Moreover, the co-precipitate contained 18% tannins. Morphological analysis revealed that the particles in the SR-CR decoction precipitate were spherical microparticles with an average diameter of around 600 nm. Pharmacokinetic research demonstrated that there were significant differences in the AUC, C_(max), t_(1/2), and T_(max) of baicalin, a major component, in rats administered with lyophilized powders of the combined decoction and single decoctions of SR-CR orally, suggesting that the precipitate generated during the decoction process can affect the in vivo behavior of the main components of the SR-CR decoction. It can reduce the absorption of baicalin in the body, decrease the extent of rapid drug release, and to a certain extent, prevent adverse reactions or side effects.
Rats
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Scutellaria baicalensis/chemistry*
;
Berberine
;
Chromatography, High Pressure Liquid
;
Mass Spectrometry
10.Lipid-lowering effect of drug pair Scutellariae Radix-Coptidis Rhizoma based on lipomics.
Wang-Zhen-Zu LIU ; Xiao-Jing QIAN ; Jia-Qi ZHANG ; Kun LIANG ; Cheng HU ; Xin-Hong WANG
China Journal of Chinese Materia Medica 2023;48(24):6711-6720
This study investigated the mechanism of action of Scutellariae Radix-Coptidis Rhizoma(SR-CR) in intervening in non-alcoholic fatty liver disease(NAFLD) in rats based on lipidomics. Thirty-six SD rats were divided into a control group, a model group, SR-CR groups of different doses, and a simvastatin group, with six rats in each group. Rats in the control group were fed on a normal diet, while those in the remaining groups were fed on a high-lipid diet. After four weeks of feeding, drug treatment was carried out and rats were sacrificed after 12 weeks. Serum liver function and lipid indexes were detected using kits, and the pathomorphology of liver tissues was evaluated by hematoxylin-eosin(HE) staining and oil red O staining. Changes in lipid levels in rats were detected using the LC-MS technique. Differential lipid metabolites were screened by multivariate statistical analysis, and lipid metabolic pathways were plotted. The changes in lipid-related protein levels were further verified by Western blot. The results showed that compared with the control group, the model group showed increased levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c)(P<0.01), and decreased levels of γ-glutamyl transferase(γ-GT) and high-density lipoprotein cholesterol(HDL-c)(P<0.01), which were significantly recovered by the intervention of SR-CR. HE staining and oil red O staining showed that different doses of SR-CR could reverse the steatosis in the rat liver in a dose-dependent manner. After lipidomics analysis, there were significant differences in lipid metabolism between the model group and the control group, with 54 lipids significantly altered, mainly including glycerolipids, phosphatidylcholine, and sphingolipids. After administration, 44 differential lipids tended to normal levels, which indicated that SR-CR groups of different doses significantly improved the lipid metabolism level in NAFLD rats. Western blot showed that SR-CR significantly decreased TG-synthesis enzyme 1(DGAT1), recombinant lipin 1(LPIN1), fatty acid synthase(FASN), acetyl-CoA carboxylase 1(ACC1), and increased the phosphorylation level of ACC1. These changes significantly decreased the synthesis of TG and increased the rate of its decomposition, which enhanced the level of lipid metabolism in the body and finally achieved the lipid-lowering effect. SR-CR can improve NAFLD by inhibiting the synthesis of fatty acids and TG.
Rats
;
Animals
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Scutellaria baicalensis
;
Drugs, Chinese Herbal/therapeutic use*
;
Pharmaceutical Preparations
;
Rats, Sprague-Dawley
;
Liver
;
Triglycerides/metabolism*
;
Cholesterol
;
Diet, High-Fat
;
Azo Compounds

Result Analysis
Print
Save
E-mail