1.Human Platelet-Rich Plasma-Derived Exosomes Promote the Proliferation of Schwann Cells Cultured in Vitro.
Dan YI ; Yong-Yi ZHANG ; Wen-Li JIANG ; Mo-Lin LI ; Xiang-Hui CHEN ; Jiang YU ; Hong-Yu YI ; Ya-Qiong ZHU ; Yue-Xiang WANG
Acta Academiae Medicinae Sinicae 2023;45(3):374-381
Objective To investigate the effect of human platelet-rich plasma-derived exosomes(PRP-exos)on the proliferation of Schwann cell(SC)cultured in vitro. Methods PRP-exos were extracted by polymerization-precipitation combined with ultracentrifugation.The morphology of PRP-exos was observed by transmission electron microscopy,and the concentration and particle size distribution of PRP-exos were determined by nanoparticle tracking analysis.Western blotting was employed to determine the expression of the marker proteins CD63,CD81,and CD9 on exosome surface and the platelet membrane glycoprotein CD41.The SCs of rats were isolated and cultured,and the expression of the SC marker S100β was detected by immunofluorescence staining.The fluorescently labeled PRP-exos were co-cultured with SCs in vitro for observation of their interaction.EdU assay was employed to detect the effect of PRP-exos on SC proliferation,and CCK-8 assay to detect the effects of PRP-exos at different concentrations(0,10,20,40,80,and 160 μg/ml)on SC proliferation. Results The extracted PRP-exos appeared as uniform saucer-shaped vesicles with the average particle size of(122.8±38.7)nm and the concentration of 3.5×1012 particles/ml.CD63,CD81,CD9,and CD41 were highly expressed on PRP-exos surface(P<0.001,P=0.025,P=0.004,and P=0.032).The isolated SCs expressed S100β,and PRP-exos could be taken up by SCs.PRP-exos of 40,80,and 160 μg/ml promoted the proliferation of SCs,and that of 40 μg/ml showed the best performance(all P<0.01). Conclusions High concentrations of PRP-exos can be extracted from PRP.PRP-exos can be taken up by SCs and promote the proliferation of SCs cultured in vitro.
Humans
;
Rats
;
Animals
;
Exosomes/metabolism*
;
Platelet-Rich Plasma
;
Schwann Cells
;
Coculture Techniques
;
Cell Proliferation
;
Cells, Cultured
2.Deciphering the dynamic characteristics of non-neuronal cells in dorsal root ganglion of rat at different developmental stage based on single cell transcriptome data.
Jiaqi ZHANG ; Junhua LIU ; Jie MA ; Pan SHEN ; Yunping ZHU ; Dong YANG
Chinese Journal of Biotechnology 2023;39(9):3772-3786
Dorsal root ganglia (DRG) is an essential part of the peripheral nervous system and the hub of the peripheral sensory afferent. The dynamic changes of neuronal cells and their gene expression during the development of dorsal root ganglion have been studied through single-cell RNAseq analysis, while the dynamic changes of non-neuronal cells have not been systematically studied. Using single cell RNA sequencing technology, we conducted a research on the non-neuronal cells in the dorsal root ganglia of rats at different developmental stage. In this study, primary cell suspension was obtained from using the dorsal root ganglions (DRGs, L4-L5) of ten 7-day-old rats and three 3-month-old rats. The 10×Genomics platform was used for single cell dissociation and RNA sequencing. Twenty cell subsets were acquired through cluster dimension reduction analysis, and the marker genes of different types of cells in DRG were identified according to previous researches about DRG single cell transcriptome sequencing. In order to find out the non-neuronal cell subsets with significant differences at different development stage, the cells were classified into different cell types according to markers collected from previous researches. We performed pseudotime analysis of 4 types Schwann cells. It was found that subtype Ⅱ Schwann cells emerged firstly, and then were subtype Ⅲ Schwann cells and subtype Ⅳ Schwann cells, while subtype Ⅰ Schwann cells existed during the whole development procedure. Pseudotime analysis indicated the essential genes influencing cell fate of different subtypes of Schwann cell in DRG, such as Ntrk2 and Pmp2, which affected cell fate of Schwann cells during the development period. GO analysis of differential expressed genes showed that the up-regulated genes, such as Cst3 and Spp1, were closely related to biological process of tissue homeostasis and multi-multicellular organism process. The down regulated key genes, such as Col3a1 and Col4a1, had close relationship with the progress of extracellular structure organization and negative regulation of cell adhesion. This suggested that the expression of genes enhancing cell homestasis increased, while the expression of related genes regulating ECM-receptor interaction pathway decreased during the development. The discovery provided valuable information and brand-new perspectives for the study on the physical and developmental mechanism of Schwann cell as well as the non-neuronal cell changes in DRG at different developmental stage. The differential gene expression results provided crucial references for the mechanism of somatosensory maturation during development.
Rats
;
Animals
;
Ganglia, Spinal/metabolism*
;
Rats, Sprague-Dawley
;
Transcriptome
;
Neurons/metabolism*
;
Schwann Cells/physiology*
3.Coordinated Regulation of Myelination by Growth Factor and Amino-acid Signaling Pathways.
Zhiwen YANG ; Zongyan YU ; Bo XIAO
Neuroscience Bulletin 2023;39(3):453-465
Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.
Amino Acids
;
Myelin Sheath/metabolism*
;
Schwann Cells/metabolism*
;
Oligodendroglia/metabolism*
;
Signal Transduction
;
Intercellular Signaling Peptides and Proteins/metabolism*
4.Action of Schwann cells implanted in cerebral hemorrhage lesion.
Hong WAN ; Shao-Dong ZHANG ; Jun-Hua LI
Biomedical and Environmental Sciences 2007;20(1):47-51
OBJECTIVETo investigate whether there is neogenesis of myelin sheath and neuron after transplantation of Schwann cells into cerebral hemorrhage lesion.
METHODSSchwann cells were expanded, labeled with BrdU in vitro and transplanted into rat cerebral hemorrhage with blood extracted from femoral artery and then injected into the basal nuclei. Double immunohistochemistry staining and electron microscopy were used to detect the expression of BrdU/MBP and BrdU/GAP-43 and remyelination.
RESULTSBrdU/MBP double positive cells could be seen at 1 week up to 16 weeks after transplantation of Schwann cells. Thin remyelination was observed under electron microscope. GAP-43 positive cells appeared after 12 weeks and were found more in Hippocamp.
CONCLUSIONSGrafted Schwann cells participate in remyelination and promoter nerve restore in rat cerebral hemorrhage.
Animals ; Cerebral Hemorrhage ; metabolism ; therapy ; GAP-43 Protein ; metabolism ; Rats ; Rats, Wistar ; Schwann Cells ; metabolism ; transplantation ; Sciatic Nerve ; cytology ; embryology
5.Transcriptome Analysis of Schwann Cells at Various Stages of Myelination Implicates Chromatin Regulator Sin3A in Control of Myelination Identity.
Bin ZHANG ; Wenfeng SU ; Junxia HU ; Jinghui XU ; Parizat ASKAR ; Shuangxi BAO ; Songlin ZHOU ; Gang CHEN ; Yun GU
Neuroscience Bulletin 2022;38(7):720-740
Enhancing remyelination after injury is of utmost importance for optimizing the recovery of nerve function. While the formation of myelin by Schwann cells (SCs) is critical for the function of the peripheral nervous system, the temporal dynamics and regulatory mechanisms that control the progress of the SC lineage through myelination require further elucidation. Here, using in vitro co-culture models, gene expression profiling of laser capture-microdissected SCs at various stages of myelination, and multilevel bioinformatic analysis, we demonstrated that SCs exhibit three distinct transcriptional characteristics during myelination: the immature, promyelinating, and myelinating states. We showed that suppressor interacting 3a (Sin3A) and 16 other transcription factors and chromatin regulators play important roles in the progress of myelination. Sin3A knockdown in the sciatic nerve or specifically in SCs reduced or delayed the myelination of regenerating axons in a rat crushed sciatic nerve model, while overexpression of Sin3A greatly promoted the remyelination of axons. Further, in vitro experiments revealed that Sin3A silencing inhibited SC migration and differentiation at the promyelination stage and promoted SC proliferation at the immature stage. In addition, SC differentiation and maturation may be regulated by the Sin3A/histone deacetylase2 (HDAC2) complex functionally cooperating with Sox10, as demonstrated by rescue assays. Together, these results complement the recent genome and proteome analyses of SCs during peripheral nerve myelin formation. The results also reveal a key role of Sin3A-dependent chromatin organization in promoting myelinogenic programs and SC differentiation to control peripheral myelination and repair. These findings may inform new treatments for enhancing remyelination and nerve regeneration.
Animals
;
Axons
;
Chromatin/metabolism*
;
Gene Expression Profiling
;
Myelin Sheath/metabolism*
;
Nerve Regeneration/physiology*
;
Rats
;
Schwann Cells/metabolism*
;
Sciatic Nerve/injuries*
6.Research on the mechanism of high glucose affecting the apoptosis of schwann cells by Nox4 NADPH oxidase.
Ting YU ; Qing XIN ; Fei XU ; Lei LI
Chinese Journal of Applied Physiology 2019;35(2):130-134
OBJECTIVE:
To investigate the mechanism of high glucose affecting the apoptosis of schwann cells through Nox4 NADPH oxidase.
METHODS:
The schwann cells of newborn Wistar rats were cultured in vitro. The cultured cells were divided into four groups: control group, high-glucose group, NOX4 siRNA group and control siRNA group (n=10). The WST-1 method was used to detect the cell vitality, and the DCFH-DA method was used to detect the contents of intracellular reactive oxygen free radicals (ROS). Nox4 and Caspase3 mRNA expressions were detected by real-time fluorescence quantitative RT-PCR. Nox4 and Caspase3 protein expressions were determined by Western blot.
RESULTS:
High glucose culture up-regulated Nox4 mRNA and protein expressions of schwann cells, decreased activity of schwann cells, increased intracellular ROS content, and promoted apoptosis by increasing Caspase3 mRNA and protein expressions. NOX4 siRNA blocked the accumulation of ROS in the high glucose cultured schwann cells, and reduced the damage of glucose on cell viability, by inhibiting NOX4 gene expression. NOX4 siRNA also reduced cell apoptosis by down-regulating Caspase3 mRNA and protein expressions.
CONCLUSION
Nox4 was involved in the hyperglycemic-induced apoptosis of schwann cells through ROS. The regulation of Nox4 expression or function might be a new way to treat diabetic peripheral neuropathy.
Animals
;
Apoptosis
;
Caspase 3
;
metabolism
;
Cells, Cultured
;
Culture Media
;
Glucose
;
NADPH Oxidase 4
;
metabolism
;
Rats
;
Rats, Wistar
;
Reactive Oxygen Species
;
metabolism
;
Schwann Cells
;
cytology
;
metabolism
7.Differentiation of adult human bone marrow mesenchymal stem cells into Schwann-like cells in vitro.
Li-ye YANG ; Jia-kun ZHENG ; Chao-yang WANG ; Wen-yu LI
Chinese Journal of Traumatology 2005;8(2):77-80
OBJECTIVETo investigate the differentiative capability of adult human bone marrow mesenchymal stem cells (BMSCs) into Schwann-like cells.
METHODSBone marrows were aspirated from healthy donors and mononuclear cells were separated by Percoll lymphocytes separation liquid (1.073 g/ml) with centrifugation, cells were cultured in DMEM/F12 (1:1) medium containing 10% fetal bovine serum (FBS), 20 ng/ml epidermal growth factor (EGF) and 20 ng/ml basic fibroblast growth factor (bFGF). Cells of passage 1 were identified with immunocytochemistry.
RESULTSMononuclear cells separated by Percoll's were passaged 10 times by trypsin/ethylenediaminetetraacetic acid (EDTA) digestion in 40 days, and BMSCs increased about 6x10(7) times in this short period. Immunohistochemistry identified that BMSCs were CD34- and CD31-, but they expressed neuron specific enolase; 0.01%-0.02% of total cells expressed nestin, the marker for neural progenitor cells; 40%-50% cells stained heavily by neurofilament 200; and no glial fibrillary acidic protein (GFAP) positive cells were identified; S100 expression was detected among 0.1%-0.2% cells.
CONCLUSIONSBone marrow contains the stem cells with the ability of differentiating into Schwann-like cells, which may represent an alternative stem cell sources for neural transplantation.
Adult ; Bone Marrow Cells ; cytology ; metabolism ; Cell Differentiation ; physiology ; Cell Proliferation ; Humans ; Immunohistochemistry ; Intermediate Filament Proteins ; metabolism ; Mesenchymal Stromal Cells ; cytology ; metabolism ; Nerve Tissue Proteins ; metabolism ; Nestin ; Neurofilament Proteins ; metabolism ; Phosphopyruvate Hydratase ; metabolism ; S100 Proteins ; metabolism ; Schwann Cells ; cytology
8.Coexpression of Schwann cell marker GFAP and myoepithelial cell marker alpha-SMA in salivary adenoid cystic carcinoma.
Mo-yi SUN ; Wei CHEN ; Lian-jia YANG ; Shao-zhong DONG
Chinese Journal of Stomatology 2006;41(8):461-463
OBJECTIVETo observe the expression of Schwann cell marker GFAP and myoepithelial cell marker alpha-SMA in salivary adenoid cystic carcinoma (ACC), and to evaluate the relationship of GFAP, alpha-SMA and perineural invasion in ACC.
METHODSImmunohistochemical SABC method, double-label immunofluorescence and CLSM were used to detect the expression of GFAP and alpha-SMA proteins in salivary ACC tissue samples.
RESULTSIn salivary ACC tissue samples, both GFAP and alpha-SMA proteins were positive, which were coexpressed in cytoplasm of the same onco-myoepithelial cells.
CONCLUSIONSThere may be Schwann cell differentiation in onco-myoepithelial cell of salivary ACC, and it may be the pathological base of perineural invasion in salivary ACC.
Actins ; metabolism ; Carcinoma, Adenoid Cystic ; metabolism ; pathology ; Epithelial Cells ; metabolism ; pathology ; Glial Fibrillary Acidic Protein ; metabolism ; Humans ; Muscle Cells ; metabolism ; pathology ; Salivary Gland Neoplasms ; metabolism ; pathology ; Schwann Cells ; metabolism ; pathology
9.Induced differentiation of rat adipose-derived stem cells into Schwann-like cells.
Yin-juan TANG ; Li-hua ZHANG ; Jie-ming LIU ; Wei-ren DONG ; Jia-song GUO ; Hai-hong WANG ; Xiang DAI ; Ying-hua CHEN ; Ying-qing XIAO
Journal of Southern Medical University 2009;29(4):680-684
OBJECTIVETo assess the differentiation potential of rat adipose-derived stem cells (ADSCs) into Schwann-like cells in vitro.
METHODSADSCs isolated from adult SD rats were cultured in vitro and identified with the cell surface antigens CD44, CD49d and CD106 by immunocytochemistry. The ADSCs of the sixth to eighth passages were inoculated in polylysine-coated culture plate and cultured for 12 days in DMEM/F12 culture medium containing 10% fetal bovine serum, 5 ng/ml platelet-derived growth factor, 10 ng/ml basic fibroblast growth factor, 14 micromol/L Forskolin and 200 ng/ml Heregulin to induce their differentiation in vitro. Immunocytochemistry was performed to identify the expression of the cell surface markers nestin, glial fibrillary acidic protein (GFAP), S-100, and P75.
RESULTSThe isolated and purified ADSCs were positive for CD44 and CD49d expressions but negative for CD106. After 12 days of culture in the conditional culture medium, most of the cells showed positive expressions of GFAP, S-100, and P75, the specific protein markers of Schwann cells.
CONCLUSIONAdult rat ADSCs are confirmed to have potentials of neuroglial differentiation and capable of differentiating into Schwann-like cells in vitro.
Adipose Tissue ; cytology ; Animals ; Cattle ; Cell Differentiation ; Cell Proliferation ; Cytological Techniques ; methods ; Gene Expression Regulation ; Male ; Rats ; Rats, Sprague-Dawley ; Schwann Cells ; cytology ; metabolism ; Stem Cells ; cytology
10.Effect of Jinmaitong serum on the proliferation of rat Schwann cells cultured in high glucose medium.
Ling QU ; Xiao-chun LIANG ; Hong ZHANG ; Qun-li WU ; Lian-qing SUN ; Bei GU
Chinese journal of integrative medicine 2008;14(4):293-297
OBJECTIVETo investigate the effect of Jinmaitong (JMT) serum on the proliferation of rat Schwann cells (SCs) primarily cultured in high glucose medium.
METHODSCs were primarily cultured in Dulbecco's minmum essential medium (DMEM control), 50 mmol/L glucose medium (50 mmol/L Glu), 75 mmol/L glucose medium (75 mmol/L Glu), as well as 50 mmol/L glucose medium, with different concentrations of JMT serum (undiluted, 1:2 diluted and 1:8 diluted) and Neurotropin (Ntp), respectively. The proliferation of SCs under different conditions was detected by MTT.
RESULTSCs grew exuberantly in DMEM within 24-72 h, but slowed down at 96 h. The proliferation of SCs was inhibited in 50 mmol/L Glu and 75 mmol/L Glu after cultures of 48, 72 and 96 h, which showed that both were significantly different compared to the control group (P<0.01). The inhibition was more significant in 75 mmol/L Glu than in 50 mmol/L Glu (P<0.05). Spearman's rho analysis revealed that the proliferation of SCs had a negative correlation with the concentration of glucose (r=-0.471, P<0.01). Excluding the time factor, partial correlation showed similar results (r=-0.679, P<0.01). After 48 h, the proliferation of SCs increased significantly in JMT1:2 and Ntp compared with 50 mmol/L Glu (control 0.437+or-0.019, 50 mmol/L Glu 0.367+or-0.035, JMT1:2 0.426+or-0.024, Ntp 0.422+or-0.013; P<0.01), and there were no statistically significant differences among the JMT groups, the Ntp group and the control group (P>0.05).
CONCLUSIONSThe proliferation of SCs was inhibited in high glucose medium, and the inhibition was reduced by different concentrations of JMT serum, especially at JMT1:2.
Animals ; Cell Division ; drug effects ; Cells, Cultured ; Culture Media ; Drugs, Chinese Herbal ; pharmacology ; Glucose ; metabolism ; Rats ; Schwann Cells ; cytology ; drug effects