1.LOX-1 Regulation in Anti-atherosclerosis of Active Compounds of Herbal Medicine: Current Knowledge and the New Insight.
Si-Jie YAO ; Tao-Hua LAN ; Xin-Yu ZHANG ; Qiao-Huang ZENG ; Wen-Jing XU ; Xiao-Qing LI ; Gui-Bao HUANG ; Tong LIU ; Wei-Hui LYU ; Wei JIANG
Chinese journal of integrative medicine 2023;29(2):179-185
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) have recently been identified to be closely related to the occurrence and development of atherosclerosis (AS). A growing body of evidence has suggested Chinese medicine takes unique advantages in preventing and treating AS. In this review, the related research progress of AS and LOX-1 has been summarized. And the anti-AS effects of 10 active components of herbal medicine through LOX-1 regulation have been further reviewed. As a potential biomarker and target for intervention in AS, LOX-1 targeted therapy might provide a promising and novel approach to atherosclerotic prevention and treatment.
Humans
;
Atherosclerosis
;
Scavenger Receptors, Class E/physiology*
;
Biomarkers
;
Plant Extracts
;
Lipoproteins, LDL
2.H19 recruited N 6 -methyladenosine (m 6 A) reader YTHDF1 to promote SCARB1 translation and facilitate angiogenesis in gastric cancer.
Rumeng BAI ; Miaomiao SUN ; Yuanyuan CHEN ; Shuaishuai ZHUO ; Guoxin SONG ; Tianjun WANG ; Zhihong ZHANG
Chinese Medical Journal 2023;136(14):1719-1731
BACKGROUND:
Angiogenesis is described as a complex process in which new microvessels sprout from endothelial cells of existing vasculature. This study aimed to determine whether long non-coding RNA (lncRNA) H19 induced the angiogenesis of gastric cancer (GC) and its possible mechanism.
METHODS:
Gene expression level was determined by quantitative real-time polymerase chain reaction and western blotting. Cell counting kit-8, transwell, 5-Ethynyl-2'-deoxyuridine (EdU), colony formation assay, and human umbilical vein endothelial cells (HUVECs) angiogenesis assay as well as Matrigel plug assay were conducted to study the proliferation, migration, and angiogenesis of GC in vitro and in vivo . The binding protein of H19 was found by RNA pull-down and RNA Immunoprecipitation (RIP). High-throughput sequencing was performed and next Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was conducted to analyze the genes that are under H19 regulation. Methylated RIP (me-RIP) assay was used to investigate the sites and abundance among target mRNA. The transcription factor acted as upstream of H19 was determined through chromatin immunoprecipitation (ChIP) and luciferase assay.
RESULTS:
In this study, we found that hypoxia-induced factor (HIF)-1α could bind to the promoter region of H19, leading to H19 overexpression. High expression of H19 was correlated with angiogenesis in GC, and H19 knocking down could inhibit cell proliferation, migration and angiogenesis. Mechanistically, the oncogenic role of H19 was achieved by binding with the N 6 -methyladenosine (m 6 A) reader YTH domain-containing family protein 1 (YTHDF1), which could recognize the m 6 A site on the 3'-untransated regions (3'-UTR) of scavenger receptor class B member 1 (SCARB1) mRNA, resulting in over-translation of SCARB1 and thus promoting the proliferation, migration, and angiogenesis of GC cells.
CONCLUSION
HIF-1α induced overexpression of H19 via binding with the promoter of H19, and H19 promoted GC cells proliferation, migration and angiogenesis through YTHDF1/SCARB1, which might be a beneficial target for antiangiogenic therapy for GC.
Humans
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Endothelial Cells/metabolism*
;
Gene Expression Regulation
;
Gene Expression Regulation, Neoplastic/genetics*
;
Hypoxia
;
MicroRNAs/genetics*
;
RNA
;
RNA, Long Noncoding/metabolism*
;
RNA-Binding Proteins/metabolism*
;
Scavenger Receptors, Class B/metabolism*
;
Stomach Neoplasms/genetics*
3.Association Analysis Between Methylation of SCARB1 Gene Promoter and Coronary Heart Disease.
Wei LI ; Zhen-Hua WANG ; Peng SHI ; Song XUE
Acta Academiae Medicinae Sinicae 2023;45(3):405-409
Objective To explore the relationship between scavenger receptor class B member 1 (SCARB1) gene promoter methylation and the pathogenesis of coronary artery disease. Methods A total of 120 patients with coronary heart disease treated in Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine from December 2018 to May 2020 were selected as the case group,while 140 gender and age matched healthy participants were randomly selected as the control group for a case-control study.The methylation status was detected by high-throughput target sequencing after bisulfite converting,and the methylation of CpG sites in the promoter region of SCARB1 gene was compared between the two groups. Results The case group showed higher methylation level of SCARB1+67 and lower methylation level of SCARB1+134 than the control group (both P<0.001),and the differences remained statistically significant in men (both P<0.001) and women (both P<0.001).The overall methylation level in the case group was lower than that in the control group [(80.27±2.14)% vs.(81.11±1.27)%;P=0.006],while this trend was statistically significant only in men (P=0.002). Conclusion The methylation of SCARB1 gene promotor is associated with the pathogenesis and may participate in the occurrence and development of coronary heart disease.
Male
;
Humans
;
Female
;
Methylation
;
Case-Control Studies
;
China
;
Coronary Artery Disease/genetics*
;
Promoter Regions, Genetic
;
DNA Methylation
;
Scavenger Receptors, Class B/genetics*
4.Sirt1 regulates testosterone biosynthesis in Leydig cells via modulating autophagy.
Muhammad Babar KHAWAR ; Chao LIU ; Fengyi GAO ; Hui GAO ; Wenwen LIU ; Tingting HAN ; Lina WANG ; Guoping LI ; Hui JIANG ; Wei LI
Protein & Cell 2021;12(1):67-75
Animals
;
Autophagy/genetics*
;
Cholesterol/metabolism*
;
Gene Expression Regulation
;
Integrases/metabolism*
;
Leydig Cells/metabolism*
;
Male
;
Mice, Knockout
;
Multienzyme Complexes/metabolism*
;
Phosphoproteins/metabolism*
;
Primary Cell Culture
;
Progesterone Reductase/metabolism*
;
RNA Splicing Factors/metabolism*
;
Scavenger Receptors, Class B/metabolism*
;
Sequestosome-1 Protein/metabolism*
;
Signal Transduction
;
Sirtuin 1/genetics*
;
Sodium-Hydrogen Exchangers/metabolism*
;
Steroid 17-alpha-Hydroxylase/metabolism*
;
Steroid Isomerases/metabolism*
;
Testosterone/genetics*
5.Study on visfatin-induced inflammation and necroptosis via LOX-1 in human umbilical vein endothelial cells.
Xiaoyu HAN ; Wenchao WU ; Xiaojing LIU ; Ye ZHU
Journal of Biomedical Engineering 2020;37(5):834-841
The aim of the study is to identify the effects and underlying mechanisms of visfatin on inflammation and necroptosis in vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with visfatin or pretreated with Polyinosinic acid (LOX-1 inhibitor). By using the Western blot, RT-PCR, immunocytochemistry, enzyme-linked immunosorbent assay (ELISA), MTT and flow cytometry technique, the occurrence of inflammation and necroptosis in HUVECs were evaluated. Our results showed that 100 ng/mL visfatin significantly increased the mRNA and protein expression of monocyte chemotactic protein 1 (MCP-1) and LOX-1 after 24 hours' treatment in HUVECs. However, pretreatment with Polyinosinic acid could significantly reduce the expression of MCP-1 compared with visfatin group. Additionally, 100 ng/mL visfatin could induce the production of necrotic features and increase the mRNA expression of BMF (one of the markers of necroptosis), while pretreating with Polyinosinic acid markedly downregulated the mRNA expression of BMF gene and promoted the cell proliferation. These results indicate that visfatin might induce inflammation and necroptosis via LOX-1 in HUVECs, suggesting that visfatin plays a central role in the development of atherosclerosis.
Cells, Cultured
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Inflammation/chemically induced*
;
Necroptosis
;
Nicotinamide Phosphoribosyltransferase
;
Scavenger Receptors, Class E/genetics*
6.Effect of Ginkgo biloba Tablet on the Expression of Scavenger Receptor A of the Aortic Wall in Atherosclerotic Rats.
Gui-yue ZHU ; Wei ZHU ; Ling-yun PAN ; Xiao-jing MA ; Hai-tao YUAN ; Guang YANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(4):449-453
OBJECTIVETo observe the expression of Ginkgo biloba Tablet (GbT) on scavenger receptor A (SRA) of the aortic wall and changes of serum inflammatory factors in atherosclerotic rats, and to explore its new mechanism for fighting against atherosclerosis (AS).
METHODSTotally 45 male Wistar rats were randomly divided into the control group, the model group, the GbT group, 15 rats in each group. Levels of blood glucose, blood lipids, blood calcium, serum C-reactive protein (CRP), soluble intercellular adhesion molecule-1 (slCAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1) were measured in all rats. The expression of SRA in the aortic wall of atherosclerotic rats was observed by immunohistochemical assay. The correlation between the expression of SRA and levels of in-flammatory factors was also observed.
RESULTSCompared with the control group, blood glucose and blood calcium obviously increased (P < 0.05); levels of TG, TC, and LDL-C were significantly elevated (P < 0.01); neointimal areas were significantly thickened, increased intima percentage was significantly enlarged, narrowed lumen index was significantly reduced; levels of CRP, sICAM-1, and sVCAM-1 were significantly elevated in the model group (all P < 0.01). Compared with the model group, blood glucose and blood calcium obviously decreased (P < 0.05); levels of TG, TC, and LDL-C significantly decreased (P < 0.01) in the GbT group. Aortic lumens were obviously narrower in the model group than in the GbT group (P < 0.05). SRA expressed at the aortic wall. The aforesaid 3 indices were significantly improved in the GbT group than in the model group (P < 0.01). Serum levels of CRP, sICAM-1, and sVCAM-1 were significantly decreased in the GbT group than in the model group (P < 0.01). Serum levels of CRP, sICAM-1, and sVCAM-1 were positively correlated with the percentage of SRA positive expression area (r = 0.701, 0.604, 0.581, all P < 0.01).
CONCLUSIONSSerum levels of inflammatory factors in atherosclerotic rats were elevated, and the expression of SRA in the aortic wall was enhanced. The expression of SRA was closely correlated with serum levels of inflammatory factors. GbT could decrease serum levels of inflammatory factors and inhibit the expression of SRA.
Animals ; Aorta ; drug effects ; metabolism ; Atherosclerosis ; drug therapy ; Blood Glucose ; analysis ; C-Reactive Protein ; analysis ; Calcium ; blood ; Drugs, Chinese Herbal ; pharmacology ; Ginkgo biloba ; chemistry ; Intercellular Adhesion Molecule-1 ; blood ; Lipids ; blood ; Male ; Random Allocation ; Rats ; Rats, Wistar ; Scavenger Receptors, Class A ; metabolism ; Tablets ; Vascular Cell Adhesion Molecule-1 ; blood
7.The in vitro anti-atherosclerotic activity of compound E0869.
Xiao WANG ; Chang LIU ; Peng LIU ; Ni LI ; Yan-Ni XU ; Shu-Yi SI
Acta Pharmaceutica Sinica 2015;50(4):440-446
ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI/CLA-1) are the key proteins in reverse cholesterol transport (RCT). The high expression of ABCA1 and SR-BI/CLA-1 can decrease the danger of atherosclerosis. The purpose of the study is to find ABCA1 and CLA-1up-regulators for treating atherosclerosis by using cell-based high throughput screening models. Among 20 000 compounds screened, E0869 [1-(3, 4-dimethylphenyl)-1-oxopropan-2-yll4-((methylsulfonyl)methyl)benzoate] was found as the positive hit. The up-regulated activities of E0869 in ABCAl1-LUC and bCA-l1-LUC HepG2 cell were 160% and 175%, respectively. The EC50 values of E0869 in ABCAl1-LUC and CLA-l1-LUC HepG2 cell were 3.79 and 1.42 pμol- x ,(-1) respectively. E0869 could upregulate the mRNA and protein levels of ABCA1, SR-BI/CLA-1 and ABCGJ1genes in HepG2 and RAW264.7 cells by Real-Time Quantitative PCR and Western blotting analysis, but could not influence the expression of FAS, SREBP-l1 and CD36. Foam cell assay showed that E0869 could inhibit lipids accumulation in mouse peritoneal macrophages RAW264.7. Cholesterol efflux assay showed that E0869 could induce HDL-mediated cholesterol efflux in mouse peritoneal macrophages RAW264.7. In conclusion, E0869 could up-regulate ABCA1 and CLA-1 activity, and had good anti-atherosclerotic activity in vitro.
ATP Binding Cassette Transporter 1
;
metabolism
;
Animals
;
Atherosclerosis
;
drug therapy
;
Biological Transport
;
Cholesterol
;
Hep G2 Cells
;
High-Throughput Screening Assays
;
Humans
;
Macrophages, Peritoneal
;
drug effects
;
Mice
;
RNA, Messenger
;
Scavenger Receptors, Class B
;
metabolism
;
Up-Regulation
8.Prevention and Treatment of Atherosclerosis by Three Different Chinese Medical Compounds: a Mechanism Study.
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(10):1244-1248
OBJECTIVETo study the effect of Buyang Huanwu Decoction (BHD), Xuefu Zhuyu Decoction (XZD), and Sijunzi Decoction (SD) contained serums on expressions of Toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signals, lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and to explore possible anti-atherosclerotic mechanisms.
METHODSTwenty New Zealand rabbits were divided into 4 groups at random, i.e., the normal control group, the BHD group (6.7 g/kg), the XZD group (3.6 g/kg), and the SD group (1.6 g/kg), 5 in each group. All medication lasted for 7 successive days. Two h after the final medication, about 50 mL blood was withdrawn from rabbit heart for preparing serums. Human umbilical vein endothelial cell ECV304 were cultured in vitro for 18 h and randomly divided into the blank control group, the model group, the Western medicine (WM) control group, the BHD group, the XZD group, and the SD group at random. ECV304, except in the blank control group, were stimulated with lipopolysaccharide (LPS) for 2 h. Those in the WM control group and CM groups were treated respectively with corresponding CM contained serum for 24 h. Finally gene and protein expressions of TLR4, myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor-associated factor-6 (TRAF-6), NF-κB, LOX-1, TNF-α, ICAM-1, and VCAM-1 were detected by fluorescent quantitative PCR and Western blot.
RESULTSCompared with the blank control group, mRNA expressions of TLR4, MyD88, TRAF-6, NF-KB, LOX-1 , TNF-cx, ICAM-1, and VCAM-1 increased significantly; protein expressions of TLR4, NF-κB, LOX-1, TNF-α, ICAM-1, and VCAM-1 also increased significantly in the model group (P < 0.01). Compared with the model group, mRNA and protein expressions of each index could be significantly inhibited in the BHD group, the XZD group, and the WM control group (P < 0.05). Besides, mRNA and protein expressions of each index could be significantly elevated more in the BHD group and the XZD group than in the WM control group (P < 0.05). No statistical difference existed in each index between the SD group and the rest groups (P > 0.05).
CONCLUSIONSThe mechanism of BHD and XZD for fighting against atherosclerosis might be associated with inhibiting TLR4/NF-κB signal transduction pathway and expressions of its downstream inflammatory factors such as LOX-1, TNF-α, ICAM-1, and VCAM-1. But SD showed no associated effect on atherosclerosis.
Animals ; Atherosclerosis ; drug therapy ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Endothelial Cells ; Intercellular Adhesion Molecule-1 ; metabolism ; Lipopolysaccharides ; Myeloid Differentiation Factor 88 ; metabolism ; NF-kappa B ; metabolism ; Rabbits ; Scavenger Receptors, Class E ; Signal Transduction ; TNF Receptor-Associated Factor 6 ; metabolism ; Toll-Like Receptor 4 ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism ; Umbilical Veins ; Vascular Cell Adhesion Molecule-1 ; metabolism
9.Prognostic role of genetic biomarkers in clinical progression of prostate cancer.
Maria Jesus ALVAREZ-CUBERO ; Luis Javier MARTINEZ-GONZALEZ ; Maria SAIZ ; Pedro CARMONA-SAEZ ; Juan Carlos ALVAREZ ; Manrique PASCUAL-GELER ; Jose Antonio LORENTE ; Jose Manuel COZAR
Experimental & Molecular Medicine 2015;47(8):e176-
The aim of this study was to analyze the use of 12 single-nucleotide polymorphisms in genes ELAC2, RNASEL and MSR1 as biomarkers for prostate cancer (PCa) detection and progression, as well as perform a genetic classification of high-risk patients. A cohort of 451 men (235 patients and 216 controls) was studied. We calculated means of regression analysis using clinical values (stage, prostate-specific antigen, Gleason score and progression) in patients and controls at the basal stage and after a follow-up of 72 months. Significantly different allele frequencies between patients and controls were observed for rs1904577 and rs918 (MSR1 gene) and for rs17552022 and rs5030739 (ELAC2). We found evidence of increased risk for PCa in rs486907 and rs2127565 in variants AA and CC, respectively. In addition, rs627928 (TT-GT), rs486907 (AG) and rs3747531 (CG-CC) were associated with low tumor aggressiveness. Some had a weak linkage, such as rs1904577 and rs2127565, rs4792311 and rs17552022, and rs1904577 and rs918. Our study provides the proof-of-principle that some of the genetic variants (such as rs486907, rs627928 and rs2127565) in genes RNASEL, MSR1 and ELAC2 can be used as predictors of aggressiveness and progression of PCa. In the future, clinical use of these biomarkers, in combination with current ones, could potentially reduce the rate of unnecessary biopsies and specific treatments.
Aged
;
Aged, 80 and over
;
Cohort Studies
;
Disease Progression
;
Endoribonucleases/*genetics
;
Gene Frequency
;
Genetic Markers/genetics
;
Genetic Predisposition to Disease
;
Humans
;
Male
;
Middle Aged
;
Neoplasm Proteins/*genetics
;
*Polymorphism, Single Nucleotide
;
Prognosis
;
Prostate/metabolism/*pathology
;
Prostatic Neoplasms/*diagnosis/*genetics
;
Scavenger Receptors, Class A/*genetics
10.Endoplasmic reticulum stress mediates oxidized low density lipoprotein-induced scavenger receptor A1 upregulation in macrophages.
Shu-Tong YAO ; ; Li ZHAO ; Cheng MIAO ; Hua TIAN ; Na-Na YANG ; Shou-Dong GUO ; Lei ZHAI ; Jun CHEN ; Yi-Wei WANG ; Shu-Cun QIN
Acta Physiologica Sinica 2014;66(5):612-618
The present study was to investigate whether endoplasmic reticulum stress (ERS) was involved in oxidized low density lipoprotein (ox-LDL)-induced scavenger receptor A1 (SR-A1) upregulation in macrophages. RAW264.7 cells were pretreated with 20 mmol/L of 4-phenylbutyric acid (PBA) for 30 min and then treated with ox-LDL (50 mg/L) for 12 h or stimulated with 2 mg/L tunicamycin (TM) or 2 μmol/L thapsigagin (TG) for 4 h. In addition, RAW264.7 cells were incubated with 0.5, 1 and 2 mg/L TM for 4 h or treated with 2 mg/L TM for 1, 2 and 4 h, respectively. The intracellular total cholesterol (TC) content was measured using a tissue/cell total cholesterol assay kit. The protein and mRNA expressions of SR-A1 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot and real-time PCR, respectively. Dil-ox-LDL uptake was detected using a microplate reader. The results showed that ox-LDL-induced cholesterol accumulation in macrophages was attenuated by PBA, an ERS inhibitor. Ox-LDL caused significant SR-A1 upregulation with concomitant activation of ERS as assessed by upregulation of GRP78, whereas PBA significantly inhibited the ox-LDL-induced SR-A1 upregulation (P < 0.05) and slightly decreased GRP78 expression by 39.3% (P = 0.057). TM, an ERS inducer, upregulated SR-A1 protein expression and ox-LDL uptake in dose- and time-dependent manner, but had no significant effect on SR-A1 mRNA level. However, the TM- or TG-induced SR-A1 upregulation and ox-LDL uptake were significantly mitigated by PBA. These data indicate that ERS plays a critical role in ox-LDL-induced SR-A1 upregulation, which in turn enhances the foam cell formation by uptaking more ox-LDL.
Animals
;
Cell Line
;
Cholesterol
;
metabolism
;
Endoplasmic Reticulum Stress
;
Heat-Shock Proteins
;
metabolism
;
Lipoproteins, LDL
;
pharmacology
;
Macrophages
;
drug effects
;
metabolism
;
Mice
;
Scavenger Receptors, Class A
;
metabolism
;
Up-Regulation

Result Analysis
Print
Save
E-mail