2.Therapeutic Approaches for Inhibition of Protein Aggregation in Huntington's Disease.
Experimental Neurobiology 2014;23(1):36-44
Huntington's disease (HD) is a late-onset and progressive neurodegenerative disorder that is caused by aggregation of mutant huntingtin protein which contains expanded-polyglutamine. The molecular chaperones modulate the aggregation in early stage and known for the most potent protector of neurodegeneration in animal models of HD. Over the past decades, a number of studies have demonstrated molecular chaperones alleviate the pathogenic symptoms by polyQ-mediated toxicity. Moreover, chaperone-inducible drugs and anti-aggregation drugs have beneficial effects on symptoms of disease. Here, we focus on the function of molecular chaperone in animal models of HD, and review the recent therapeutic approaches to modulate expression and turn-over of molecular chaperone and to develop anti-aggregation drugs.
Huntington Disease*
;
Models, Animal
;
Molecular Chaperones
;
Neurodegenerative Diseases
3.Porcine epidemic diarrhea virus: an update overview of virus epidemiology, vaccines, and control strategies in South Korea
Guehwan JANG ; Duri LEE ; Sangjune SHIN ; Jeonggyo LIM ; Hokeun WON ; Youngjoon EO ; Cheol-Ho KIM ; Changhee LEE
Journal of Veterinary Science 2023;24(4):e58-
Porcine epidemic diarrhea virus (PEDV) has posed significant financial threats to the domestic pig industry over the last three decades in South Korea. PEDV infection will mostly result in endemic persistence in the affected farrow-to-finish (FTF) herds, leading to endemic porcine epidemic diarrhea (PED) followed by year-round recurrent outbreaks. This review aims to encourage collaboration among swine producers, veterinarians, and researchers to offer answers that strengthen our understanding of PEDV in efforts to prevent and control endemic PED and to prepare for the next epidemics or pandemics. We found that collaboratively implementing a PED risk assessment and customized four-pillar-based control measures is vital to interrupt the chain of endemic PED in affected herds: the former can identify on-farm risk factors while the latter aims to compensate for or improve weaknesses via herd immunity stabilization and virus elimination. Under endemic PED, long-term virus survival in slurry and asymptomatically infected gilts (“Trojan Pigs”) that can transmit the virus to farrowing houses are key challenges for PEDV eradication in FTF farms and highlight the necessity for active monitoring and surveillance of the virus in herds and their environments. This paper underlines the current knowledge of molecular epidemiology and commercially available vaccines, as well as the risk assessment and customized strategies to control PEDV. The intervention measures for stabilizing herd immunity and eliminating virus circulation may be the cornerstone of establishing regional or national PED eradication programs.