1.Distribution and Characteristics of Pancreatic Volume Using Computed Tomography Volumetry
Jihyun YOON ; Kwang Gi KIM ; Young Jae KIM ; Sangheon LIM ; Yeon-Ho PARK ; Doojin KIM ; Hee-Taik KANG ; Doo-Ho LEE
Healthcare Informatics Research 2020;26(4):321-327
Objectives:
Changes in the pancreatic volume (PV) are useful as potential clinical markers for some pancreatic-related diseases. The objective of this study was to measure the volume of the pancreas using computed tomography (CT) volumetry and to evaluate the relationships between sex, age, body mass index (BMI), and sarcopenia.
Methods:
We retrospectively analyzed the abdominal CT scans of 1,003 subjects whose ages ranged between 10 and 90 years. The pancreas was segmented manually to define the region of interest (ROI) based on CT images, and then the PVs were measured by counting the voxels in all ROIs within the pancreas boundary. Sarcopenia was identified by examination of CT images that determined the crosssectional area of the skeletal muscle around the third lumbar vertebra.
Results:
The mean volume of the pancreas was 62.648 ± 19.094 cm3. The results indicated a negative correlation between the PV and age. There was a positive correlation between the PV and BMI for both sexes, females, and males (r = 0.343, p < 0.001; r = 0.461, p < 0.001; and r = 0.244, p < 0.001, respectively). Additionally, there was a positive correlation between the PV and sarcopenia for females (r = 0.253, p < 0.001) and males (r = 0.200, p < 0.001).
Conclusions
CT pancreas volumetry results may help physicians follow up or predict conditions of the pancreas after interventions for pancreatic-related disease in the future.
2.Enhanced Cardiomyogenic Differentiation of P19 Embryonal Carcinoma Stem Cells.
Jihyun YANG ; Seok Jin KO ; Beom Suk KIM ; Hyun Seo KIM ; Sangheon PARK ; Doran HONG ; Soon Woong HONG ; Ji Hyun CHOI ; Chi Yeon PARK ; Seung Cheol CHOI ; Sun Jun HONG ; Do Sun LIM
Korean Circulation Journal 2009;39(5):198-204
BACKGROUND AND OBJECTIVES: We investigated the effects of different concentrations of serum, 5-azacytidine, and culture time on the cardiomyogenic differentiation of P19 embryonal carcinoma stem cells in the course of developing an efficient protocol for generating the cardiomyogenic lineage. MATERIALS AND METHODS: P19 cells were plated at a density of 1x10(6) cells on 10-cm bacterial dishes for 96 hours in the presence of 1% dimethyl sulfoxide to form embryoid bodies. The embryoid bodies were cultured in medium with 2% or 10% fetal bovine serum for an additional 10 or 15 consecutive days in the presence of 0, 1, or 3 microM 5-azacytidine. RESULTS: Quantitative real-time polymerase chain reaction (PCR) analysis showed that the messenger ribonucleic acid (mRNA) expression of cardiac muscle-specific genes, such as GATA4, alpha-actin, alpha-myosin heavy chain, and cardiac troponin T, were significantly higher in the 15-day culture groups than in the 10-day culture groups. Furthermore, the cardiac muscle-specific genes were expressed more in the high-serum groups compared to the low-serum groups regardless of the culture time. Cardiomyogenic differentiation of the P19 cells was most effective in 1 microM 5-azacytidine regardless of the serum concentrations. In addition, the stimulation effects of 5-azacytidine on cardiomyogenic differentiation were more significant under low-serum culture conditions compared to high-serum culture conditions. Cardiomyogenic differentiation of P19 cells was further confirmed by immunostaining with cardiac muscle-specific antibodies. CONCLUSION:Taken together, these results demonstrated that cardiomyogenic differentiation of P19 cells was enhanced by a combination of different experimental factors.
Actins
;
Antibodies
;
Azacitidine
;
Carcinoma, Embryonal
;
Cell Differentiation
;
Dimethyl Sulfoxide
;
Embryoid Bodies
;
Embryonal Carcinoma Stem Cells
;
Myocytes, Cardiac
;
Real-Time Polymerase Chain Reaction
;
RNA
;
Safrole
;
Troponin T
;
Ventricular Myosins