1.A Case Refort of Sandhoff Disease.
Korean Journal of Ophthalmology 2005;19(1):68-72
Sandhoff disease is a rare autosomal recessive metabolic disease presenting bilateral optic atrophy and a cherry red spot in the macula. This case report presents the characteristics of a patient with Sandhoff disease as assessed by ophthalmic, neuroimaging, and laboratory procedures. Ophthalmologic examination revealed that the patient could not fixate her eyes on objects nor follow moving targets. A pale optic disc and a cherry red spot in the macula were seen in both eyes. Low signal intensity at the thalamus and high signal intensity at the cerebral white matter were noted in a T2-weighted brain MR image. A lysosomal enzyme assay using fibroblasts showed the marked reduction of both total beta-hexosaminidases, A and B. Based on the above clinical manifestations and laboratory findings, we diagnosed the patient as having Sandhoff disease.
Atrophy
;
Cerebral Cortex/*pathology
;
Child, Preschool
;
Female
;
Humans
;
Isoenzymes/deficiency
;
Lipid Metabolism, Inborn Errors/*diagnosis/enzymology
;
Magnetic Resonance Imaging
;
Ocular Motility Disorders/*diagnosis
;
Optic Disk/*pathology
;
Retinal Diseases/*diagnosis
;
Sandhoff Disease/*diagnosis/enzymology
;
Thalamus/pathology
;
beta-N-Acetylhexosaminidase/deficiency
2.Clinical and molecular characteristics of a child with juvenile Sandhoff disease.
Yonglan HUANG ; Ting XIE ; Jipeng ZHENG ; Xiaoyuan ZHAO ; Hongsheng LIU ; Li LIU
Chinese Journal of Pediatrics 2014;52(4):313-316
OBJECTIVETo explore the clinical features and molecular mutation of HEXB gene in a case with juvenile Sandhoff disease.
METHODWe retrospectively reviewed the clinical, neuroimaging and biochemical findings in this Chinese child with juvenile Sandhoff disease. Hexosaminidase A and hexosaminidase A & B activities were measured in blood leukocytes by fluorometric assay. HEXB gene molecular analysis was performed by PCR and direct sequencing.
RESULTThe 9-year-old boy was admitted for psychomotor regression. He presented slowly progressive gait disorder and dysarthria during the last three years. Cranial MRI revealed a marked cerebellar atrophy with normal intensity in the thalamus and basal ganglia. Brain MRS showed normal in the thalamus and basal ganglia. Hexosaminidase A was 69.5 (mg·h) [normal controls 150-360 nmol/(mg·h)], hexosaminidase A & B activity was 119 nmol/(mg·h)[normal controls 600-3 500 nmol/(mg·h)], confirming the diagnosis of Sandhoff disease. The patient was a compound heterozygote for a novel deletion mutation c.1404delT (p. P468P fsX62) and a reported mutation c.1509-26G>A.
CONCLUSIONThe clinical features of juvenile Sandhoff disease include ataxia, dysarthria and cerebellar atrophy. The enzyme assay and molecular analysis of HEXB gene can confirm the diagnosis of Sandhoff disease. The novel mutation c.1404delT(p. P468P fsX62) is a disease-related mutation.
Brain ; diagnostic imaging ; pathology ; Cerebellar Ataxia ; diagnosis ; enzymology ; genetics ; Child ; DNA Mutational Analysis ; Heterozygote ; Hexosaminidase A ; blood ; metabolism ; Hexosaminidase B ; blood ; metabolism ; Humans ; Leukocytes ; enzymology ; Magnetic Resonance Imaging ; Male ; Mutation ; Radiography ; Retrospective Studies ; Sandhoff Disease ; diagnosis ; enzymology ; genetics ; beta-Hexosaminidase beta Chain ; genetics