1.Mechanism of salicylic acid ameliorates salt-induced changes in Andrographis paniculata.
Qi-Chao WANG ; Xu LING ; Miao ZHANG ; Wei-Guo CHAI ; Xue-Min ZHANG ; Xu XIN-HAN ; Zong-Suo LIANG
China Journal of Chinese Materia Medica 2020;45(22):5465-5471
In this study, Andrographis paniculata seedlings were used as experimental materials to study the effects of salicylic acid(SA) on the growth and effective component accumulation of A. paniculata under NaCl stress. The results showed that with the increase of NaCl concentration, the growth of A. paniculata seedlings was significantly inhibited, and the content of carotene and carotenoid decreased. The activity of antioxidant enzyme was enhanced. At the same time, the contents of proline, proline and soluble protein were on the rise. The contents of andrographolide, new andrographolide and deoxyandrographolide showed an upward trend, while deoxyandrographolide showed a downward trend. Treatment with 100 mmol·L~(-1) NaCl+5 mg·L~(-1) SA showed a significant increase in antioxidant enzyme activity in A. paniculata leaves. Treatment with 100 mmol·L~(-1) NaCl+10 mg·L~(-1) SA showed significant changes in soluble protein and proline content in A. paniculata leaves, while MDA content in A. paniculata leaves significantly decreased. 10 mg·L~(-1) SA had the best effect on the growth of A. paniculata seedlings under salt stress. Under the treatment of 50 mmol·L~(-1) NaCl+10 mg·L~(-1) SA, fresh weight, dry weight and leaf dry weight of A. paniculata seedlings reached the highest level, which were 1.02, 1.09 and 1.11 times of those in the control group, respectively. The concentrations of NaCl and 10 mg·L~(-1) SA were significantly higher than those of the control group. Four key enzyme genes of A. paniculata diterpene lactone synthesis pathway were selected to explore the molecular mechanism of salicylic acid to alleviate salt stress. With the increase of salt stress, the relative expressions of HMGR, GGPS and ApCPS were up-regulated, indicating that salt stress may enhance the synthesis of A. paniculata diterpene lactone through MVA pathway. SA can effectively promote the growth and development of A. paniculata under salt stress, improve its osmotic regulation and antioxidant capacity, improve its salt tolerance, and alleviate the effects of salt stress on A. paniculata.
Andrographis
;
Plant Leaves
;
Salicylic Acid
;
Salt Tolerance
;
Seedlings/genetics*
2.Study on salt stress tolerance of Chrysanthemum morifolium 'Hangbaiju' and 'Huangju' and F1 seedlings.
Kangcai WANG ; Ying HUANG ; Xingli TANG ; Danxia LI
China Journal of Chinese Materia Medica 2011;36(17):2321-2324
OBJECTIVETo study the salt stress tolerance of Hongxinju, Huangju and F1 seedlings from orthogonal and reciprocal cross under different salt treatments. Grope for transmissibility of salt tolerance between parents and F1 seedlings, and relativity between flavone, chlorogenic acid contents and salt tolerance.
METHODThe materials were put in 5 different concentrations of Hoagland nutrient solution (0, 40, 80, 120, 160 mmol x L(-1)) containing NaCl, keeping grads while raising the consistency of NaCl day by day. The injured leaf area per plant, proline, betaine, MDA, flavones and chlorogenic acid contents were measured and analyzed after treatment.
RESULTAs NaCl concentration was below 120 mmol x L(-1), the salt tolerance of Hongxinju was higher than that of Huangju, the salt tolerance of Hongxinju x Huangju higher than that of parents, the salt tolerance of Huangju x Hongxinju was at the level of parents. As NaCl concentration between 120 to 160 mmol x L(-1), the salt tolerance of Huangju was higher than that of Hongxinju, the salt tolerance of Huangju x Hongxinju higher than that of parents and the salt tolerance of Hongxinju x Huangju was at the level of parents.
CONCLUSIONSalt tolerance of F1 is more influenced by female parent, relativity showed between flavonoids, chlorogenic acid contents and salt tolerance.
Breeding ; China ; Chlorides ; metabolism ; Chrysanthemum ; genetics ; growth & development ; physiology ; Salt-Tolerance ; Seedlings ; genetics ; growth & development ; physiology
3.Salinity tolerance in barley during germination- homologs and potential genes.
Edward MWANDO ; Tefera Tolera ANGESSA ; Yong HAN ; Chengdao LI
Journal of Zhejiang University. Science. B 2020;21(2):93-121
Salinity affects more than 6% of the world's total land area, causing massive losses in crop yield. Salinity inhibits plant growth and development through osmotic and ionic stresses; however, some plants exhibit adaptations through osmotic regulation, exclusion, and translocation of accumulated Na+ or Cl-. Currently, there are no practical, economically viable methods for managing salinity, so the best practice is to grow crops with improved tolerance. Germination is the stage in a plant's life cycle most adversely affected by salinity. Barley, the fourth most important cereal crop in the world, has outstanding salinity tolerance, relative to other cereal crops. Here, we review the genetics of salinity tolerance in barley during germination by summarizing reported quantitative trait loci (QTLs) and functional genes. The homologs of candidate genes for salinity tolerance in Arabidopsis, soybean, maize, wheat, and rice have been blasted and mapped on the barley reference genome. The genetic diversity of three reported functional gene families for salt tolerance during barley germination, namely dehydration-responsive element-binding (DREB) protein, somatic embryogenesis receptor-like kinase and aquaporin genes, is discussed. While all three gene families show great diversity in most plant species, the DREB gene family is more diverse in barley than in wheat and rice. Further to this review, a convenient method for screening for salinity tolerance at germination is needed, and the mechanisms of action of the genes involved in salt tolerance need to be identified, validated, and transferred to commercial cultivars for field production in saline soil.
Gene Expression Regulation, Plant
;
Genetic Variation
;
Germination/physiology*
;
Hordeum/physiology*
;
Salt Tolerance/genetics*
4.Effect of ACC oxidase gene AhACOs on salt tolerance of peanut.
Jianbin HUANG ; Wenjie ZHOU ; Lei FANG ; Mingming SUN ; Xin LI ; Jingjing LI ; Xiaoting LI ; Yanyan TANG ; Defeng JIANG ; Hong ZHU ; Jiongming SUI ; Lixian QIAO
Chinese Journal of Biotechnology 2023;39(2):603-613
ACC oxidase (ACO) is one of the key enzymes that catalyze the synthesis of ethylene. Ethylene is involved in salt stress response in plants, and salt stress seriously affects the yield of peanut. In this study, AhACO genes were cloned and their functions were investigated with the aim to explore the biological function of AhACOs in salt stress response, and to provide genetic resources for the breeding of salt-tolerant varieties of peanut. AhACO1 and AhACO2 were amplified from the cDNA of salt-tolerant peanut mutant M29, respectively, and cloned into the plant expression vector pCAMBIA super1300. The recombinant plasmid was transformed into Huayu22 by pollen tube injection mediated by Agrobacterium tumefaciens. After harvest, the small slice cotyledon was separated from the kernel, and the positive seeds were screened by PCR. The expression of AhACO genes was analyzed by qRT-PCR, and the ethylene release was detected by capillary column gas chromatography. Transgenic seeds were sowed and then irrigated with NaCl solution, and the phenotypic changes of 21-day-seedings were recorded. The results showed that the growth of transgenic plants were better than that of the control group Huayu 22 upon salt stress, and the relative content of chlorophyll SPAD value and net photosynthetic rate (Pn) of transgenic peanuts were higher than those of the control group. In addition, the ethylene production of AhACO1 and AhACO2 transgenic plants were 2.79 and 1.87 times higher than that of control peanut, respectively. These results showed that AhACO1 and AhACO2 could significantly improve the salt stress tolerance of transgenic peanut.
Salt Tolerance/genetics*
;
Arachis/genetics*
;
Plant Breeding
;
Ethylenes/metabolism*
;
Plants, Genetically Modified/genetics*
;
Gene Expression Regulation, Plant
;
Plant Proteins/genetics*
5.Screening and evaluation of saline-alkali-tolerant and growth-promoting bacteria.
Xue SUN ; Yonghua DONG ; Na WANG ; Wenhui CUI ; Xianyan LIAO ; Li LIU
Chinese Journal of Biotechnology 2020;36(7):1356-1364
Salinity is the most important factor for the growth of crops. It is an effective method to alleviate the toxic effect caused by salt stress using saline-alkali-tolerant and growth-promoting bacteria in agriculture. Seven salt-tolerant bacteria were screened from saline-alkali soil, and the abilities of EPS production, alkalinity reduction and IAA production of the selected strains were investigated. A dominant strain DB01 was evaluated. The abilities of EPS production, alkalinity reduction and IAA production of strain DB01 were 0.21 g/g, 8.7% and 8.97 mg/L, respectively. The isolate was identified as Halomonas aquamarina by partial sequencing analysis of its 16S rRNA genes, and had the ability to inhibit the growth of Fusarium oxysporum f. sp., Alternaria solani, Phytophthora sojae and Rhizoctonia cerealis. It also could promote root length and germination rate of wheat seedlings under salt stress. Halomonas aquamarina can provide theoretical basis for the development of soil microbial resources and the application in saline-alkali soil improvement.
Alkalies
;
metabolism
;
Bacteria
;
drug effects
;
genetics
;
Halomonas
;
genetics
;
Plant Roots
;
microbiology
;
RNA, Ribosomal, 16S
;
genetics
;
Salt Tolerance
;
genetics
;
Seedlings
;
growth & development
;
microbiology
;
Soil
;
chemistry
;
Soil Microbiology
;
Triticum
;
microbiology
6.Selection and characterization of salt-tolerant calli of Taraxacum officinale.
Xinguo ZHANG ; Xianyang CHEN ; Dan JIANG ; Yinxin LI
Chinese Journal of Biotechnology 2008;24(7):1202-1209
In order to obtain salt-tolerant calli of Dandelion (Taraxacum officinale Weber), calli were induced from leaf explants of Dandelion on Murashige and Skoog's medium supplemented with 2.0 mg/L 6-benzyladenine and 0.5 mg/L 2,4-dichlorophen oxyacetic acid With 1.5% NaCl as selection pressure, most calli became brown and dead, whereas some new cell clusters appeared at the edge of the brown calli after 2 to 3 weeks. The survived cells were picked out and sub-cultured every 3 weeks onto the fresh selection medium and salt-tolerant calli were finally obtained through 4 continuous selections on the selection medium supplemented with 1.5% NaCl. Salt-tolerant calli increased steadily under a fixed NaCl stress though their relative growth rate decreased with increased NaCl concentration whereas the control calli which were sub-cultured by 4 continus selections on salt free medium ceased to grow under the same condition. This result indicated that the salt-tolerance of the selected calli is improved and this character is stable. Compared with the control, the SDS-PAGE pattern of the salt-tolerant calli had a unique 34 kD protein band. Its 30 kD and 18 kD protein bands were up-regulated. Further more, within the NaCl stress range up to 1.5%, the activities of antioxidant enzymes such as super oxidase dimutase, peroxidase and catalase, and the proline contents of the salt-tolerant calli were higher than those of the control. The results indicated that the selected calli with improved and stable salt tolerance were cell variants. The accumulation of the organic compatible solutes including proteins and the enhanced antioxidant capabilities in the salt tolerant calli are the two ways for them to regulate their osmotic homeostasis and alleviate the secondary reactive oxygen spexies damage respectively.
Adaptation, Physiological
;
Cell Culture Techniques
;
methods
;
Drug Tolerance
;
physiology
;
Salt-Tolerant Plants
;
genetics
;
growth & development
;
physiology
;
Sodium Chloride
;
pharmacology
;
Stress, Physiological
;
Taraxacum
;
genetics
;
growth & development
;
physiology
7.Selection and identification of salt-tolerant variants of Taraxacum officinale.
Xinguo ZHANG ; Yinxin LI ; Hua CHEN ; Wuliang SHI
Chinese Journal of Biotechnology 2008;24(2):262-271
In order to obtain salt-tolerant variant plants of Dandelion (Taraxacum officinale Weber), the leaf discs were excised from 20 to 30-day old seedlings to produce callus, then the induced calli were transferred to selection mediums containing 1.5% NaCl. After regenerating and rooting, these salt-tolerant calli finally developed into 12 variant plantlets. Compared with the wild-type, these regenerated plants produced more trichomes on their leaves, and had larger leaves and shorter petioles. Additionally, the dumpy roots and an approximately 2-cm bract in middle parts of the floricanes were clearly observed in these salt-tolerant plants. By RAPD (Random Amplified Polymorphic DNA) and SDS-PAGE analysis, these salt-tolerant plants showed differences from the control at DNA and protein levels. With 1.5% NaCl treatment, the antioxidant enzyme activity, proline content, and flavonoid concentration were higher in these salt-tolerant plants, whereas maloaldehyde concentration was significantly lower. Salt-tolerant lines of T. officinale showed stronger anti-oxidative activity and higher flavonoid contents.
Culture Techniques
;
methods
;
Drug Tolerance
;
genetics
;
Flavones
;
analysis
;
Genetic Variation
;
genetics
;
Plant Leaves
;
genetics
;
growth & development
;
Random Amplified Polymorphic DNA Technique
;
Salt-Tolerant Plants
;
genetics
;
growth & development
;
Seedlings
;
genetics
;
growth & development
;
Sodium Chloride
;
pharmacology
;
Superoxide Dismutase
;
analysis
;
Taraxacum
;
genetics
;
growth & development