1.Production of gastrodin through biotransformation of p-hydroxybenzaldehyde by cell suspension cultures of Datura tatula L.
Jia-Shun GONG ; Wei-Peng MA ; Jun-Xue PU ; Shu-Guan XU ; Shuang-Qing ZHENG ; Chun-Jie XIAO
Chinese Journal of Biotechnology 2006;22(5):800-804
The conversion of exogenous p-hydroxybenzaldehyde to p-hydroxy-methyl-phenol-beta-D-glucoside (gastrodin) was studied by using cell suspension culture of Datura tatula L. The chemical structure of this synthesized gastrodin was identified based on the spectral analysis and chemical evidence. The conversion procedure of p-hydroxybenzaldehyde into gastrodin by D. tatula L. cell suspension cultures was established. The synthesized gastrodin (II) was isolated from the ferment liquor and identified by spectral analysis. At the same time, the p-hydroxybenzyl alcohol (I) converted through biotransformation of p-hydroxybenzaldehyde by cell suspension cultures of D. tatula L. was also isolated and identified. The efficiency of glucosylation of p-hydroxybenzaldehyde was remarkably enhanced by adding salicylic acid (0.1 mg/L) and keeping the lower pressure (0.001MPa) in 25L airlift loop bioreactor. The biotransformation of exogenous p-hydroxybenzaldehyde to gastrodin by cell suspension culture of D. tatula L. is a promising approach.
Benzaldehydes
;
metabolism
;
Benzyl Alcohols
;
chemistry
;
Bioreactors
;
Biotransformation
;
Datura
;
metabolism
;
Glucosides
;
biosynthesis
;
chemistry
;
Salicylic Acid
;
pharmacology
;
Suspensions
2.Physiological regulation of salicylic acid on Helianthus tubeuosus upon copper stress and root FTIR analysis.
Jinxiang AI ; Jieke GE ; Ziyi ZHANG ; Wenqian CHEN ; Jiayi LIANG ; Xinyi WANG ; Qiaoyuan WU ; Jie YU ; Yitong YE ; Tianyi ZHOU ; Jinyi SU ; Wenwen LI ; Yuhuan WU ; Peng LIU
Chinese Journal of Biotechnology 2023;39(2):695-712
Phytoremediation plays an important role in the treatment of heavy metal pollution in soil. In order to elucidate the mechanism of salicylic acid (SA) on copper absorption, seedlings from Xuzhou (with strong Cu-tolerance) and Weifang Helianthus tuberosus cultivars (with weak Cu-tolerance) were selected for pot culture experiments. 1 mmol/L SA was sprayed upon 300 mg/kg soil copper stress, and the photosynthesis, leaf antioxidant system, several essential mineral nutrients and the changes of root upon copper stress were analyzed to explore the mechanism of copper resistance. The results showed that Pn, Tr, Gs and Ci upon copper stress decreased significantly compared to the control group. Meanwhile, chlorophyll a, chlorophyll b and carotenoid decreased with significant increase in initial fluorescence (F0), maximum photochemical quantum yield of PSⅡ (Fv/Fm), electron transfer rate (ETR) and photochemical quenching coefficient (qP) content all decreased. The ascorbic acid (AsA) content was decreased, the glutathione (GSH) value was increased, the superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activity in the leaves were decreased, and the peroxidase (POD) activity was significantly increased. SA increased the Cu content in the ground and root system, and weakened the nutrient uptake capacity of K, Ca, Mg, and Zn in the root stem and leaves. Spray of exogenous SA can maintain the opening of leaf stomata, improve the adverse effect of copper on photosynthetic pigment and PSⅡ reaction center. Mediating the SOD and APX activity started the AsA-GSH cycle process, effectively regulated the antioxidant enzyme system in chrysanthemum taro, significantly reduced the copper content of all parts of the plant, and improved the ion exchange capacity in the body. External SA increased the content of the negative electric group on the root by changing the proportion of components in the root, promoted the absorption of mineral nutrient elements and the accumulation of osmoregulatory substances, strengthened the fixation effect of the root on metal copper, and avoided its massive accumulation in the H. tuberosus body, so as to alleviate the inhibitory effect of copper on plant growth. The study revealed the physiological regulation of SA upon copper stress, and provided a theoretical basis for planting H. tuberosus to repair soil copper pollution.
Antioxidants
;
Copper
;
Helianthus/metabolism*
;
Salicylic Acid/pharmacology*
;
Chlorophyll A/pharmacology*
;
Spectroscopy, Fourier Transform Infrared
;
Chlorophyll/pharmacology*
;
Ascorbic Acid
;
Superoxide Dismutase/metabolism*
;
Photosynthesis
;
Glutathione
;
Plant Leaves
;
Stress, Physiological
;
Seedlings
3.Effect of calcium on medium alkalinization induced by salicylic acid in Salvia miltiorrhiza suspension cultures.
Liancheng LIU ; Cong WANG ; Juan'e DONG ; Hui SU ; Zequn ZHUO ; Yaxin XUE
Chinese Journal of Biotechnology 2013;29(7):986-997
We studied medium alkalinization in Salvia miltiorrhiza suspension cultures treated with salicylic acid and the effect of Ca2+ in this process through application of calcium channel antagonists (Verapamil, LaCl3, LiCl, 2-APB) and ionophore A23187. The results show that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture. Verapamil and LaCl3 or LiCl and 2-APB, two different groups of calcium channel antagonist, significantly inhibited the medium alkalinization induced by salicylic acid. However, the suppression effect of verapamil or LaCl3 on medium alkalinization induced by salicylic acid was higher than that of LiCl or 2-APB. When two types of calcium channel inhibitor (LaCl3 and 2-APB) were used together, the medium alkalinization induced by salicylic acid was completely suppressed and even reduced the pH in medium. On the other hand, A23187 could promote the medium alkalinization. Based on the results above, we speculated that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture, depending on the calcium from both extracell and intracell. Moreover, calcium from extracell plays a more dominant role in this process. Reveal of relationship in this research between Ca2+ and medium alkalinization can provide theory evidence for mechanism of the plant secondary metabolism.
Calcimycin
;
pharmacology
;
Calcium
;
chemistry
;
Calcium Channel Blockers
;
pharmacology
;
Calcium Ionophores
;
pharmacology
;
Cell Culture Techniques
;
Culture Media
;
chemistry
;
Salicylic Acid
;
pharmacology
;
Salvia miltiorrhiza
;
metabolism
;
Verapamil
;
pharmacology
4.Effects of Ca2+ on salicylic-acid induced biosynthesis of salvianolic acid B in young seedlings of Salvia miltiorrhiza Bunge.
Rongrong CAO ; Bingyu XING ; Xiaolin DANG ; Yaqin YAO ; Liancheng LIU ; Juan'e DONG
Chinese Journal of Biotechnology 2013;29(12):1836-1846
In order to study the effects of Ca2+ in the biosynthesis of salvianolic acid B (Sal B) induced by salicylic acid (SA) in the young seedlings of Salvia miltiorrhiza, we used confocal laser scanning microscopy and high performance liquid chromatography to measure the change of relative fluorescence intensity of Ca2+ and the contents of Sal B induced by SA before and after the application of extracellular calcium channel inhibitors (VP and LaCl3), intracellular calcium channel inhibitor (LiCl), as well as intracellular calmodulin antagonist (TFP). SA could induce the calcium burst, and the Ca2+ peak could last to 2-3 min in the guard cells of S. miltiorrhiza, which prompted the biosynthesis of Sal B after the Ca2+ burst. Both Vp or LaCl3, and LiCl or TFP could inhibit the burst of Ca2+ and the biosynthesis of Sal B. The above results demonstrated that Ca2+ from the extracellular and the intracellular calcium store regulate the biosynthesis of Sal B elicited by salicylic acid in S. miltiorrhiz young seedlings.
Benzofurans
;
metabolism
;
Calcium
;
metabolism
;
Plant Leaves
;
metabolism
;
Salicylic Acid
;
pharmacology
;
Salvia miltiorrhiza
;
metabolism
;
Seedlings
;
metabolism
;
Signal Transduction
5.Effect of salicylic acid on cell growth and polysaccharide production in suspension cultures of protocorm-like bodies from Dendrobium huoshanense.
Bo WANG ; Lihua PAN ; Jianping LUO ; Xueqiang ZHA
Chinese Journal of Biotechnology 2009;25(7):1062-1068
Polysaccharides from Dendrobium huoshanense possess immunostimulating activity, antioxidant activity and anticataract activity. In order to produce the active polysaccharides from Dendrobium huoshanense through cell culture, we investigated the effects of salicylic acid on cell growth, accumulation of polysaccharides and utilization of carbon source in suspension cultures of protocorm-like bodies from Dendrobium huoshanense. Although salicylic acid slightly inhibited the cell growth, it was beneficial to the utilization of carbon source, thus leading to significant increase in the contents of polysaccharides. The highest polysaccharide production occurred on the medium supplied with 100 micromoI/L salicylic acid. After 18 days of culture the production of polysaccharides reached 3.129 g/L, which was 1.63 times that of the control. Further, we established the kinetic models describing cell growth, polysaccharide production and carbon source utilization based on Logistic equation, Luedeking-Piret equation and Luedeking-Piret-Like equation. The calculated values from the kinetic models showed a good fit to the experimental values, suggesting that salicylic acid could be an effective compound to enhance the production of active polysaccharides from protcorm-like bodies from Dendrobium huoshanense.
Cell Culture Techniques
;
methods
;
Cell Proliferation
;
drug effects
;
Dendrobium
;
growth & development
;
metabolism
;
Polysaccharides
;
biosynthesis
;
Salicylic Acid
;
pharmacology
6.Effects of methyl jasmonate and salicylic acid on phenylethanoid glycosides synthesis in suspension cultures of Cistanche deserticola.
Liang-Sheng XU ; Xiao-Feng XUE ; Chun-Xiang FU ; Zhi-Ping JIN ; Yu-Quan CHEN ; De-Xiu ZHAO
Chinese Journal of Biotechnology 2005;21(3):402-406
The present study investigated the influence of the methyl jasmonate and salicylic acid elicitors on the formation of phenylethanoid glycosides (PeG) in the suspension cultures of Cistanche deserticola. The results showed that methyl jasmonate and salicylic acid enhanced greatly the accumulation of PeG and echinacoside (Echin), but their optimum elicitation dosage and addition time were different. The yields of PeG and Echin were significantly increased in the presence of 5 micromol/L methyl jasmonate on day 14 (up to 2.59-fold and 3.82-fold, respectively), whereas treated with 50 micromol/L salicylic acid on day 28, the maximum content of them were, respectively, 2.71 and 3.16-fold higher than the untreated cell cultures.
Acetates
;
pharmacology
;
Cell Culture Techniques
;
Cistanche
;
drug effects
;
metabolism
;
Culture Media
;
Cyclopentanes
;
pharmacology
;
Glycosides
;
biosynthesis
;
Oxylipins
;
pharmacology
;
Phenylethyl Alcohol
;
metabolism
;
Salicylic Acid
;
pharmacology
7.Nonexpressor of pathogenesis-related genes 1 (NPR1): a key node of plant disease resistance signalling network.
Hong-Zhi ZHANG ; Xin-Zhong CAI
Chinese Journal of Biotechnology 2005;21(4):511-515
The NPRI (nonexpressor of pathogenesis-related genes (1) gene, firstly cloned in Arabidopsis thaliana, is a key gene involved in regulation of plant disease resistance. It plays a pivotal role not only in systemic acquired resistance (SAR) and induced systemic resistance (ISR), but also in basic resistance and resistance (R) gene-dependent resistance. NPR1 monomerization induced by enhanced reducing condition after oxidative burst, and the accumulation of NPR1 monomers in the nuclei, are required and enough for expression of PR (pathogenesis-related) genes and SAR. NPR1 regulates PR gene expression through interaction with TGA transcription factors (TF). As a cross-talk point of a variety of defense signaling pathways, probably through direct or indirect interacting with some WRKY TFs and a NPR1-like protein NPR4, NPR1 is essential in balancing salicylic acid- and jasmonic acid- dependent signal transduction pathways, which is achieved through an unknown mechanism in the cytosol. The possible application of NPR1 in plant protection is also discussed in this review.
Arabidopsis Proteins
;
genetics
;
Cyclopentanes
;
metabolism
;
pharmacology
;
Gene Expression Regulation, Plant
;
genetics
;
Oxylipins
;
metabolism
;
pharmacology
;
Plant Diseases
;
genetics
;
Plants, Genetically Modified
;
Salicylic Acid
;
metabolism
;
pharmacology
;
Signal Transduction
8.Study on bulblet induction of Fritillaria anhuiensis in vitro.
Jian-ping XUE ; Ai-min ZHANG ; Mao-lin GENG ; Lin MA
China Journal of Chinese Materia Medica 2008;33(22):2603-2606
OBJECTIVETo study the optimal condition for bulb induction of Fritillaria anhuiensis in vitro.
METHODEffects of sucrose, salicylic acid, active carbon and 5 degrees C pre-incubation on bulb formation in vitro were investigated by adopting the number of bulb and fresh weight as indexes.
RESULTThe number of bulb and fresh weight in medium added with 50 g x L(-1) sucrose were significantly higher than those with other treatments. The medium with different concentrations of salicylic acid showed no significant promotion on callus differentiation. However, 5 g x L(-1) active carbon (AC) treatment was better than other treatments. Meanwhile, a large number of plantlets formed after 5 degrees C pre-incubation for 30-40 days was suitable for bulb formation and growth.
CONCLUSIONBulblet formation was optimal in MS + KT 2 mg x L(-1) + NAA 2 mg x L(-1) + 50 g x L(-1) sucrose +5 g x L(-1) AC after callus pre-incucation at 5 degrees 1 for 30-40 days.
Fritillaria ; drug effects ; growth & development ; Plant Stems ; drug effects ; growth & development ; Plants, Medicinal ; drug effects ; growth & development ; Salicylic Acid ; pharmacology ; Sucrose ; pharmacology ; Temperature
9.Hydrogen peroxide is involved in the signal transduction of salicylic acid-induced salvianolic acid B biosynthesis in Salvia miltiorrhiza cell cultures.
Hongyan CHEN ; Liancheng LIU ; Juan'e DONG ; Guangdong XIA
Chinese Journal of Biotechnology 2012;28(7):834-846
Hydrogen peroxide (H2O2), one of reactive oxygen species, is widely generated in many biological systems, and it mediates various physiological and biochemical process in plants. To investigate the role of H2O2 as a signaling molecule in the process of salicylic acid (SA)-induced Salvianolic acid B (Sal B) accumulation, we separately inspected the cultured cells of Salvia miltiorrhiza with SA, H2O2, catalase (CAT), 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (DMTU) and Imidazole (IMD) to investigate the influence on the activity of phenylalanine ammonia-lyase (PAL) and tyrosine aminotransferase (TAT) and the accumulation of Sal B. Treatment of S. miltiorrhiza cells with SA resulted in an increase of H2O2, the increase of PAL and TAT and accumulation of Sal B. Exogenous application of 10-30 mmol/L H2O2 was found to effectively increase PAL and TAT activity as well as the Sal B content. CAT, a H2O2 scavenger, eliminated the Sal B-accumulating effects of exogenous H2O2 and SA. These indicated that H2O2 may serve as an upstream signaling molecule in the SA-induced accumulation of Sal B signal transduction pathway. Disposed by DMTU, a chemical trap for H2O2, as observed to be effective in inhibiting SA-induced accumulation of Sal B. IMD strongly inhibits the activity of NADPH oxidase, which is one of the main sources of H2O2 formation in plant cells. IMD treatment strongly inhibited the accumulation of Sal B in cultured cells of S. miltiorrhiza, but the effects of IMD, can be partially reversed by the exogenous SA. The accumulation of Sal B was blocked once the generation of H2O2 by NADPH oxidase was inhibited, and H2O2 served as signaling molecule mediated the SA-induced Sal B accumulation.
Benzofurans
;
metabolism
;
Cell Culture Techniques
;
methods
;
Cells, Cultured
;
Hydrogen Peroxide
;
pharmacology
;
Salicylic Acid
;
pharmacology
;
Salvia miltiorrhiza
;
cytology
;
metabolism
;
Signal Transduction
;
drug effects
10.Expression and functional analysis of OsRboh gene family in rice immune response.
Ye LI ; Yinhua CHEN ; Jiahe WU ; Chaozu HE
Chinese Journal of Biotechnology 2011;27(11):1574-1585
The preliminary role of respiratory burst oxidase homolog (Rboh) in plant immune response is defined, but the exact function of OsRboh gene in rice immune response and its expression pattern is yet unclear. In order to clarify the role of OsRboh in rice immune response, we screened seven OsRboh genes from the latest rice genome annotation database. The result of tissue specific expression analysis demonstrated that OsRbohD was expressed only in spike and calli, and OsRbohE and OsRbohF were only expressed in calli. The rest of OsRboh genes were constitutively expressed in rice. In addition, the expression level of OsRboh gene family was analyzed in the rice leaves respectively treated with salicylic acid (SA), methyl jasmonic acid (MeJA) and Xanthomonas oryzae PV. oryzae (Xoo) PXO99 strain by Real-time PCR, and H2O2 content was also quantified by spectrophotometry after the three treatments. The result shows that the expression of OsRbohA, B, C and D was increased under the treatments of SA, the expression of OsRbohA, B, C and G was increased under the treatments of MeJA, and the expression of OsRbohA and OsRbohB was induced by Xoo PXO99 strain. However, the levels of expression and responsive times of these genes were different. Moreover, all three treatments led to H2O2 accumulation. These OsRboh genes have functional roles in rice native immune response.
Acetates
;
pharmacology
;
Amino Acid Sequence
;
Cyclopentanes
;
pharmacology
;
Hydrogen Peroxide
;
metabolism
;
Molecular Sequence Data
;
Multigene Family
;
NADPH Oxidases
;
genetics
;
immunology
;
metabolism
;
Oryza
;
genetics
;
immunology
;
metabolism
;
Oxylipins
;
pharmacology
;
Plant Immunity
;
genetics
;
Salicylic Acid
;
pharmacology
;
Xanthomonas
;
pathogenicity